Статья
2021
Abstract / Full Text

Abstract—The results on the gas permeability of oxygen- and hydrogen-permeable microtube membranes are shown. For oxygen-permeable microtube membranes of the Ba0.5Sr0.5Co0.75Fe0.2Mo0.05O3 – δ composition, the effect of silver catalyst is studied for the first time with the use of a new method of heating. Alternative hydrogen-permeable membranes based on metal nickel are made of nickel oxide by the method of phase inversion followed by the reduction in hydrogen.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

    I. V. Kovalev, I. A. Mal’bakhova, A. M. Vorob’ev, T. A. Borisenko, M. P. Popov, A. A. Matvienko, A. I. Titkov & A. P. Nemudryi

  • Novosibirsk State Technical University, Novosibirsk, Russia

    I. V. Kovalev

References
  1. Cailletet, L., First report of H embrittlement of metals, 1864, Compt. Rend., vol. 58, p. 327.
  2. Wang, J., On the diffusion of gases through metals, Proc. Cambridge Philos. Soc., 1936, vol. 32, p. 657.
  3. Pena, M.A. and Fierro, J.L.G., Chemical structure and performance of perovskite oxides, Chem. Rev., 2001, vol. 101, p. 1981.
  4. Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., and Lin, Y.S., Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci., 2008, vol. 320, p. 13.
  5. Marques, F.M.B., Kharton, V.V., Naumovich, E.N., Shaula, A.L., Kovalevsky, A.V., and Yaremchenko, A.A., Oxygen ion conductors for fuel cells and membranes: selected developments, Solid State Ionics, 2006, vol. 177, p. 1697.
  6. Pei, S., Kleefisch, M., Kobylinski, T.P., Faber, J., Udovich, C.A., Zhang-McCoy, V., Dabrowski, B., Balachandran, U., Mieville, R.L., and Poeppel, R.B., Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas, Catal. Lett., 1994, vol. 30, p. 201.
  7. Ten Elshof, J.E., van Hassel, B.A., and Bouwmeester, H.J.M., Activation of methane using solid oxide membranes, Catal. Today, 1995, vol. 25, p. 397.
  8. Leo, A., Liu, Sh., and Diniz da Costa, J.C., Development of mixed conducting membranes for clean coal energy delivery, Int. J. Greenhouse Gas Control, 2009, vol. 3, p. 357.
  9. Mahato, N., Banerjee, A., Gupta, A., Omar, S., and Balani K., Progress in material selection for solid oxide fuel cell technology: a review, Prog. Mater. Sci., 2015, vol. 72, p. 141.
  10. Tarasov, B.P., Hydrogen energetics: Past, present, prospects, Russ. J. Gen. Chem., 2007, vol. 77, p. 660.
  11. Li, Y., Zhang, M., Chu, Y., Tan, X., Gao, J., Wang, S., and Liu, S., Design of metallic Nickel hollow fiber membrane modules for pure hydrogen separation, AIChE J., 2018, vol. 64, no. 1, p. 1.
  12. Popov, M.P., Bychkov, S.F., and Nemudry, A.P., Direct AC heating of oxygen transport membranes, Solid State Ionics, 2017, vol. 312, p. 73.
  13. Popov, M.P., Bychkov, S.F., Bulina, N.V., and Nemudry, A.P., In situ high-temperature X-ray diffraction of hollow fiber membranes under operating conditions, J. Eur. Ceram. Soc., 2019, vol. 39, p. 1717.
  14. Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., Lin, Y., and Diniz da Costa, J.C., Mixed ionic-electronic conducting ceramic-based membranes for oxygen separation, J. Membrane. Sci., 2009, vol. 340, p. 148.
  15. Titkov, A.I., Logutenko, O.A., Gerasimov, E.Yu., Shundrina, I.K., Karpova, E.V., and Lyakhov, N.Z., Synthesis of silver nanoparticles stabilized by carboxylated methoxypolyethylene glycols: The role of carboxyl terminal groups in the particle size and morphology, J. Inclusion Phenom. Macrocyclic Chem., 2019, vol. 94, p. 287.
  16. Malbakhova, I.A., Titkov, A.I., Uvarov, N.F., and Ulihin, A.S., Synthesis of graphite/Ag/AgCl nanocomposite electrode materials, Mater. Today: Proc., 2019, vol. 25, p. 398.
  17. Popov, M.P., Bychkov, S.F., and Nemudry, A.P., Direct AC heating of oxygen transport membranes, Solid State Ionics, 2017, vol. 312, p. 73.
  18. Shubnikova, E.V., Bragina, O.A., and Nemudry, A.P., Mixed conducting molybdenum doped BSCF materials, Ind. Eng. Chem. Res., 2018, vol. 59, p. 242.
  19. Shubnikova, E.V., Popov, M.P., Chizhik, S.A., Bychkov, S.F., and Nemudry, A.P., The modeling of oxygen transport in MIEC oxide hollow fiber membranes, Chem. Eng. J., 2019, vol. 372, p. 251.
  20. Manukyan, K.V., Avetisyan, A.G., Shuck, C.E., Chatilyan, H.A., Rouvimov, S., Kharatyan, S.L., and Mukasyan, A.S., Nickel oxide reduction by hydrogen: Kinetics and structural transformations, J. Phys. Chem. C, 2015, vol. 119, no. 28., p. 16131.
  21. Jeangros, Q., Hansen, T.W., Wagner, J.B., Dunin-Borkowski, R.E., Hébert, C., Vanherle, C.J., and Hessler-Wyser, A., Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope, Acta Mater., 2014., vol. 67, p. 362.
  22. Mrowec, S. and Grzesik, Z., Oxidation of nickel and transport properties of nickel oxide, J. Phys. Chem. Solids, 2004, vol. 65, p. 1651.
  23. Hidayat, T., Rhamdhani, M.A., Jak, E., and Hayes, P.C., Investigation of nickel product structures developed during the gaseous reduction of solid nickel oxide, Metall. Mater. Trans. B, 2009, vol. 40B, p. 462.