Fabrication of Solid-State Thin-Film Batteries Based on RbAg4I5 by Aerosol Deposition

N. A. Ovsyannikov N. A. Ovsyannikov , G. V. Nechaev G. V. Nechaev , D. V. Novikov D. V. Novikov , A. A. Bel’mesov A. A. Bel’mesov , V. E. Pukha V. E. Pukha
Российский электрохимический журнал
Abstract / Full Text

A technology for preparation of thin-film solid-state batteries based on the silver‑iodine electrochemical system by aerosol deposition in vacuum is developed. Functional layers of the battery are studied by optical and scanning electron microscopy. Voltammetric characteristics of the thus assembled battery show that its maximum discharge current exceeds 3 mA/cm2, which is sufficient for supplying power to the majority of medical devices.

Author information
  • Center of Competence of National Technological Initiative, Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    N. A. Ovsyannikov, A. A. Bel’mesov & V. E. Pukha

  • Moscow State University, Faculty of Fundamental Physical and Chemical Engineering, 119992, Moscow, Russia

    N. A. Ovsyannikov

  • GK InEnergy Company, 115201, Moscow, Russia

    G. V. Nechaev & D. V. Novikov

  1. Mond, H.G. and Freitag, G., The cardiac implantable electronic device power source: evolution and revolution, Pacing Clin. Electrophysiol., 2014, vol. 37, p. 1728. https://doi.org/10.1111/pace.12526
  2. Khanna, V.K., Batteries for Implants, in Implantable Medical Electronic, Cham: Springer, 2016, p. 167.
  3. Babanly, M.B., Mashadieva, L.F., Velieva, G.M., Imamalieva, S.Z., and Shykhyev, Y.M., Thermodynamic study of the Ag–As–Se and Ag–SI systems using the EMF method with a solid Ag4RbI5 electrolyte, Russ. J. Electrochem., 2009. vol. 45, no. 4, p. 399.
  4. Despotuli, A.L., Lichkova, N.A., Minenkova, S.V., and Nosenko, S.V., Synthesis and certain properties of CsAg4Br3 – xI2 + x and RbAg4I5 solid electrolyte thin films, Elektrokhimiya, 1990, no. 26, p. 1524.
  5. Akedo, J., Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices, J. Therm. Spray Technol., 2008, vol. 17, no. 2, p. 181.
  6. Akedo, J. and Lebedev, M., Microstructure and electrical properties of lead zirconate titanate (Pb(Zr52/Ti48)O3) thick films deposited by aerosol deposition method, Jap. J. Appl. Phys., 1999, vol. 38, no. 9S, p. 5397.
  7. Hanft, D., Exner, J., Schubert, M., Stöcker, T., Fuierer, P., and Moos, R., An overview of the aerosol deposition method: Process fundamentals and new trends in materials applications, J. Ceram. Sci. Technol., 2015, vol. 6, no. 3, p. 147.
  8. Baek, S.W., Jeong, J., Schlegl, H., Azad, A.K., Park, D.S., Baek, U.B., and Kim, J.H., Metal-supported SOFC with an aerosol deposited in-situ LSM and 8YSZ composite cathode, Ceram. Int., 2016, vol. 42, no. 2, p. 2402.
  9. Hahn, B.D., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Choi, J.H., and Kim, S.G., Preparation and in vitro characterization of aerosol-deposited hydroxyapatite coatings with different surface roughnesses, Appl. Surf. Sci., 2011, vol. 257, no. 17, p. 7792.
  10. Piechowiak, M.A., Henon, J., Durand-Panteix, O., Etchegoyen, G., Coudert, V., Marchet, P., and Rossignol, F., Growth of dense Ti3SiC2 MAX phase films elaborated at room temperature by aerosol deposition method, J. Eur. Ceram. Soc., 2014, vol. 34, no. 5, p. 1063.
  11. Seto, N., Hirose, S., Tsuda, H., and Akedo, J., Formation of tough foundation layer for electrical plating on insulator using aerosol deposition method of Cu–Al2O3 mixed powder, in Advances in Multifunctional Materials and Systems II: Hoboken: Wiley, 2014, p. 17.
  12. Akedo, J., Aerosol deposition method for fabrication of nano crystal ceramic layer, Mater. Sci. Forum, 2004, vol. 449, p. 43.
  13. Pukha, V. and Ovsyannikov, N., Additive 2D and 3D technologies of composites based on metallic and ceramic systems using aerosol deposition, Stankoinstrument, 2018, no. 3(12), p. 44.
  14. Choi, J.J., Hahn, B.D., Ryu, J., Yoon, W.H., Lee, B.K., and Park, D.S., Preparation and characterization of piezoelectric ceramic–polymer composite thick films by aerosol deposition for sensor application, Sens. Actuators, A., 2009, vol. 153, no. 1, p. 89.
  15. Kwon, O.Y., Na, H.J., Kim, H.J., Lee, D.W., and Nam, S.M., Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition, Nanoscale Res. Lett., 2012, vol. 7, no. 1, p. 261.
  16. Kim, H.J., Yoon, Y.J., Kim, J.H., and Nam, S.M., Application of Al2O3-based polyimide composite thick films to integrated substrates using aerosol deposition method, Mater. Sci. Eng., B, 2009, vol. 161, nos. 1–3, p. 104.
  17. Akedo, J., Ryu, J., Jeong, D.Y., and Johnson, S.D., Aerosol deposition (AD) and its applications for piezoelectric devices, in Advanced Piezoelectric Materials (2nd Edition), Uchino, K., Ed., 2017, Duxford: Woodhead, p. 575.
  18. Machida, N., Peng, H., and Shigematsu, T., Mechano-chemical synthesis of RbAg4I5 and KAg4I5 crystals and their silver-ion conducting properties, J. Jpn. Soc. Powder Powder Metall., 2002, vol. 49, p. 69.
  19. Zagorodnev, V.N. and Lichkova, N.V., Synthesis of the solid electrolyte RbAg4I5 by directional crystallization of the melt, Izv. Akad. Nauk SSSR: Ser. Neorg. Mater., 1983, vol. 19, no. 6, p. 1031.
  20. Lee, D.W., Kwon, O.Y., Cho, W.J., Song, J.K., and Kim, Y.N., Characteristics and mechanism of Cu films fabricated at room temperature by aerosol deposition, Nanoscale Res. Lett., 2016, vol. 11, no. 1, p. 162.
  21. Bae, H., Choi, J., and Choi, G.M., Electrical conductivity of Gd-doped ceria film fabricated by aerosol deposition method, Solid State Ionics, 2013, vol. 236, p. 16.
  22. Mikhailova, A.M. and Ukshe, E.A., Electrochemical circuits with solid electrolytes in the system silver–complex iodine electrode, Elektrokhimia, 1987, no. 23, p. 685.