Formation of Bilayer Thin-Film Electrolyte on Cathode Substrate by Electrophoretic Deposition

E. G. Kalinina E. G. Kalinina , E. Yu. Pikalova E. Yu. Pikalova , A. A. Kolchugin A. A. Kolchugin
Российский электрохимический журнал
Abstract / Full Text

Potentialities of the method of bilayer thin-film electrolyte electrophoretic deposition onto cathodic substrate are analyzed. Ce0.8Sm0.2O1.9–δ (SDC) nanopowder and BaCe0.89Gd0.1Cu0.01O3–δ BCGCuO) micropowder are prepared by the methods of laser evaporation–condensation and pyrolysis, respectively. The effect of ultrasonic treatment on the SDC and BCGCuO particle distribution in suspensions and their electrokinetic properties are studied. The using of the ultrasonic treatment combined with centrifugation allowed obtaining an aggregative-stable suspension of the BaCe0.89Gd0.1Cu0.01O3–δ micron particles in the isopropanol–acetylacetone mixed medium (70/30 v/v) that is characterized by high zeta potential. Ce0.8Sm0.2O1.9–δ and BaCe0.89Gd0.1Cu0.01O3–δ thin films are obtained at the La2NiO4 +δ cathode substrate using electrophoretic deposition; microstructure and electric properties of the prepared thin-film structures are studied. The conductivity and electric properties of the bilayer electrolyte were found to be determined by the Ce0.8Sm0.2O1.9–δ film properties. Despite the sintering high temperature, the grain structure of the BaCe0.89Gd0.1Cu0.01O3–δ film is underdeveloped; this is determined by the micron powder properties.

Author information
  • Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620016, Russia

    E. G. Kalinina

  • Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, 620002, Russia

    E. G. Kalinina, E. Yu. Pikalova & A. A. Kolchugin

  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    E. Yu. Pikalova & A. A. Kolchugin

  1. Kendall, K., High-Temperature Solid Oxide Fuel Cells for the 21st Century. Fundamentals, Design and Applications (2nd Ed.), Elsevier, 2015.
  2. Hossain, S., Abdalla, A.M., Jamain, S.N.B., Zaini, J.H., and Azad, A.K., A review on proton conducting electrolytes for clean energy and intermediate temperaturesolid oxide fuel cells, Renew. Sust. Energy Rev., 2017, vol. 79, p. 750–764.
  3. Mogensen, M., Sammes, N.M., and Tompsett, G.A., Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, 2000, vol. 129, p. 63–94.
  4. Pikalova, E.Yu., Kolchugin, A.A., and Bamburov, V.G., Ceria based materials for high temperature electrochemistry applications, Int. J. Energy Prod. Management, 2016, vol. 1, p. 272–283.
  5. Sumi, H., Kennouche, D., Yakai-Kremski, K., Suzuki, T., Barnett, S.A., Miller, D.J., Yamaguchi, T., Hamamoto, K., and Fujishiro, Y., Electrochemical and microstructural properties of Ni–(Y2O3)0.08(ZrO2)0.92–(Ce0.9Gd0.1)O1.95 anode-supported microtubular solid oxide fuel cells, Solid State Ionics, 2016, vol. 285, p. 227–233.
  6. Matsui, T., Kosaka, T., Inaba, M., Mineshige, A., and Ogumi, Z., Effects of mixed conduction on the opencircuit voltage of distribution SOFCs based on Smdoped ceria electrolytes, Solid State Ionics, 2005, vol. 176, p. 663–668.
  7. Pikalova, E.Yu., Bamburov, V.G., Murashkina, A.A., Neuimin, A.D., Demin, A.K., and Plaksin, S.V., Solid electrolytes based on CeO2 for medium-temperature electrochemical devices, Russ. J. Electrochem., 2011, vol. 47, p. 690–696.
  8. Mori, T., Drennan, J., Wang, Y., Lee, J.-H., Li, J.-G., and Ikegami, T., Electrolytic Properties and Nanostructural Features in the La2O3–CeO2 System, J. Electrochem. Soc., 2003, vol. 150, p. A665–A673.
  9. Medvedev, D., Maragou, V., Pikalova, E., Demin, A., and Tsiakaras, P., Novel composite solid state electrolytes on the base of BaCeO3 and CeO2 for intermediate temperature electrochemical devices, J. Power Sources, 2013, vol. 221, p. 217–227.
  10. Cao, J., Gong, Z., Fan, C., Ji, Y., and Liu, W., The improvement of barium-containing anode for ceriabased electrolyte with electron-blocking layer, J. Alloys Compd., 2017, vol. 693, p. 1068–1075.
  11. Sumi, H., Suda, E., and Mori, M., Blocking layer for prevention of current leakage for reversible solid oxide fuel cells and electrolysis cells with ceria-based electrolyte, Int. J. Hydrogen Energy, 2017, vol. 42, p. 4449–4455.
  12. Sun, W., Shi, Zh., Wang, Zh., Liu, W., Bilayered BaZr0.1Ce0.7Y0.2O3–δ/Ce0.8Sm0.2O2–δ electrolyte membranes for solid oxide fuel cells with high open circuit voltages, J. Membrane Sci., 2015, vol. 476, p. 394–398.
  13. Kalinina, E.G., Pikalova, E.Yu., Menshikova, A.V., and Nikolaenko, I.V., Electrophoretic deposition of a self-stabilizing suspension based on a nanosized multicomponent electrolyte powder prepared by the laser evaporation method, Solid State Ionics, 2016, vol. 288, p. 110–114.
  14. Kalinina, E.G., Pikalova, E.Yu., Kolchugin, A.A., Pikalov, S.M., and Kaigorodov, A.S., Cyclic electrophoretic deposition of electrolyte thin-films on the porous cathode substrate utilizing stable suspensions of nanopowders, Solid State Ionics, 2017, vol. 302, p. 126–132.
  15. Sun, W., Liu, M., and Liu, W., Chemically Stable Yttrium and Tin Co-Doped Barium Zirconate Electrolyte for Next Generation High Performance Proton- Conducting Solid Oxide Fuel Cells, Adv. Energy Mater. 2013, vol. 3, p. 1041–1050.
  16. Dubal, S.U., Bhosale, C.H., and Jadhav, L.D., Performance of spray deposited Gd-doped barium cerate thin films for proton conducting SOFCs, Ceram. Int., 2015, vol. 41, p. 5607–5613.
  17. Dunyushkina, L.A, Pankratov, A.A., Gorelov, V.P., Brouzgou, A., and Tsiakaras, P., Deposition and Characterization of Y-doped CaZrO3 Electrolyte Film on a Porous SrTi0.8Fe0.2O3–δ Substrate, Electrochim. Acta, 2016, vol. 202, p. 39–46.
  18. Marrony, M., Ancelin, M., Lefevre, G., and Dailly, J., Elaboration of intermediate size planar proton conducting solid oxide cell by wet chemical routes: A way to industrialization, Solid State Ionics, 2015, vol. 275, p. 97–100.
  19. Medvedev, D., Lyagaeva, J., Vdovin, G., Beresnev, S., Demin, A., and Tsiakaras, P., A tape calendering method as an effective way for the preparation of proton ceramic fuel cells with enhanced performance, Electrochim. Acta, 2016, vol. 210, p. 681–688.
  20. Besra, L. and Liu, M., A review on fundamentals and applications of electrophoretic deposition (EPD), Progr. Mater. Sci., 2007, vol. 52, p. 1–61.
  21. Bhosale, A.G., Kadam, M.B., Rajeev, J., Pawar, S.S., and Pawar, S.H., Studies on electrophoretic deposition of nanocrystalline SDC electrolyte films, J. Alloys Compd., 2009, vol. 484, p. 795–800.
  22. Talebi, T., Raissi, B., and Maghsoudipour, A., The role of addition of water to non-aqueous suspensions in electrophoretically deposited YSZ films for SOFCs, Int. J. Hydrogen Energy., 2010, vol. 35, p. 9434–9439.
  23. Guo, F., Javed, A., Shapiro, I.P., and Xiao, P., Effect of HCl concentration on the sintering behavior of 8 mol % Y2O3 stabilized ZrO2 deposits produced by electrophoretic deposition (EPD), J. European Ceram. Soc., 2012, vol. 32, p. 211–218.
  24. Das, D., Bagchi, B., and Basu, R.N., Nanostructured zirconia thin film fabricated by electrophoretic deposition technique, J. Alloys Compd., 2017, vol. 693, p. 1220–1230.
  25. Kalinina, E.G., Safronov, A.P., and Kotov, Yu.A., Formation of thin YSZ electrolyte films by electrophoretic deposition on porous cathodes, Russ. J. Electrochem, 2011, vol. 47, p. 671–675.
  26. Kalinina, E.G., Efimov, A.A., and Safronov, A.P., The influence of nanoparticle aggregation on formation of ZrO2 electrolyte thin films by electrophoretic deposition, Thin Solid Films, 2016, vol. 612, p. 66.
  27. Kalinina, E.G., Samatov, O.M., and Safronov, A.P., Stable Suspensions of Doped Ceria Nanopowders for Electrophoretic Deposition of Coatings for Solid Oxide Fuel Cells, Inorg. Mater., 2016, vol. 52, p. 858–864.
  28. Pikalova, E.Yu., Nikonov, A.V., Zhuravlev, V.D., Bamburov, V.G., Samatov, O.M., Lipilin, A.S., Khrustov, V.R., Nikolaenko, I.V., Plaksin, S.V., and Molchanova, N.G., Effect of the synthesis technique on the physicochemical properties of Ce0.8(Sm0.75Sr0.2Ba0.05)0.2O2–δ, Inorg. Mater. 2011, vol. 47, p. 396–401.
  29. Kalinina, E.G., Pikalova, E.Yu., and Safronov, A.P., A study of the electrophoretic deposition of thin-film coatings based on barium cerate nanopowder produced by laser evaporation, Russ. J. Appl. Chem., 2017, vol. 90, p. 701–707.
  30. Zhuravlev, V.D., Bamburov, V.G., Ermakova, L.V., and Lobachevskaya, N.I., Synthesis of functional materials in combustion reactions, Phys. Atomic Nuclei., 2015, vol. 77, p. 1–17.
  31. Boehm, E., Bassat, J.-M., Dordor, P., Mauvy, F., Grenier, J.-C., and Stevens, Ph., Oxygen diffusion and transport properties in non-stoichiometric Ln2−xNiO4 + δ oxides, Solid State Ionics, 2005, vol. 176, p. 2717.
  32. Kolchugin, A.A., Pikalova, E.Yu., Bogdanovich, N.M., Bronin, D.I., Pikalov, S.M., Plaksin, S.V., Ananyev, M.V., and Eremin, V.A., Structural, electrical and electrochemical properties of calcium-doped lanthanum nickelate, Solid State Ionics, 2016, vol. 288, p. 48.
  33. Shen, Y., Zhao, H., Liu, X., and Xu, N., Preparation and electrical properties of Ca-doped La2NiO4 + δ cathode materials for IT-SOFC, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 15124–15131.
  34. Kalinina, E.G., Lyutyagina, N.A., Leiman, D.V., and Safronov, A.P., Influence of the Degree of Deaggregation of YSZ Nanopowders in Suspension on the Process of Electrophoretic Deposition, Nanotechnologies in Russia, 2014, vol. 9, № 5–6, p. 274–278.]
  35. Kosmulski, M., Chemical properties of material surfaces, NewYork, Basel: Marcel Dekker, 2001.
  36. Ishihara, T., Sato, K., and Takita, Y., Electrophoretic Deposition of Y2O3-Stabilized ZrO2 Electrolite Films in Solid Oxide Fuel Cells, J. Amer. Ceram. Soc., 1996, vol. 79, p. 913–919.
  37. Xie, Z., Ma, J., Xu, Q., Huang, Y., and Cheng, Y.-B., Effects of dispersants and soluble counter-ions on aqueous dispersibility of nano-sized zirconia powder, Ceram. Int., 2004, vol. 30, p. 219–224.
  38. Zhao, K., Xu, Q., Huang, D.-P., Chen, M., and Kim, B.-H., Microstructure and electrochemical properties of porous La2NiO4 + δ electrodes spin-coated on Ce0.8Sm0.2O1.9 electrolyte, Solid State Ionics, 2012, vol. 18, p. 75.
  39. Flura, A., Nicollet, C., Fourcade, S., Vibhu, V., Rougier, A., Bassat, J.-M., and Grenier, J.-C., Identification and modelling of the oxygen gas diffusion impedance in SOFC porous electrodes: application to Pr2NiO4 + δ, Electrochim. Acta, 2015, vol. 174, p. 1030–1040.
  40. Gorbova, E., Maragou, V., Medvedev, D., Demin, A., and Tisakaras, P., Influence of Cu on the properties of gadolinium-doped barium cerate, J. Power Sources, 2008, vol. 181, p. 292–296.