Examples



mdbootstrap.com



 
Статья
2021

Molecular Dynamics Simulation of Methyl Ester Sulfonates at the Water/Chloroform Interface


 Zhiqiang Li Zhiqiang Li, Junjie ZhouJunjie Zhou, Chengqiang ZhangChengqiang Zhang
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421020175
Abstract / Full Text

Molecular dynamics simulation method was used to investigate distribution properties of methyl ester sulfonates (MES) with different carbon numbers at the chloroform/water interface. We consider a series of surfactant isomers in the family of methyl ester sulfonates, denoted by CnMES, where n is the number of carbon atoms in the alkyl chain. According to the simulation results, a well-stable interface between the chloroform and water phases could form in the presence of MES surfactants. The simulation results show that stability of interface with C18MES is relatively high comparing to C14MES and C16MES. From the comparison of the interfacial thickness obtained by the density profiles, we could realize that the surfactant C16MES cause the lowest interfacial thickness. Furthermore, we found that the system containing C14MES has the largest interfacial thickness as it shows the best miscibility with chloroform among the other surfactants.

Author information
  • School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan, China Zhiqiang Li & Junjie Zhou
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources CAGS, Zhengzhou, Henan, ChinaChengqiang Zhang
References
  1. F. W. F. Wong, A. B. Ariff, and D. C. Stuckey, Biochem. Eng. J. 30, 117 (2017).
  2. Z. A. Maurad, Z. Idris, and R. Ghazali, J. Oleo Sci. 66, 677 (2017).
  3. N. Pal, S. Kumar, and A. Bera, Fuel 235, 995 (2019).
  4. S. C. Ramkumar, A. Murail, G. Preethi, Rev. Pielarie Incaltaminte 17, 181 (2017).
  5. X. Tai, J. Song, and Z. Du, J. Dispers. Sci. Technol. 39, 1422 (2018).
  6. H. D. Tao, Z. Ge, and K. H. Xu, Deterg. Cosmet. 41, 30 (2018).
  7. H. Yan, S. L. Yuan, and G. Y. Xu, Langmuir 26, 10448 (2010).
  8. C. A. Miller, N. L. Abbott, and J. J. Pablo, Langmuir 25, 2811 (2009).
  9. S. S. Jang, S. T. Lin, and P. T. Maiti, J. Phys. Chem. B 108, 12130 (2004).
  10. X. Y. Hu, X. W. Song, and Q. W. Li, Acta Chim. Sin. 67, 1691 (2009).
  11. L. J. Wang, J. Shi, and F. J. Zhao, Shandong Daxue Xuebao, Gongxueban 44, 83 (2014).
  12. J. Shi, K. Lv, and L. S. Yuan, Shandong Daxue Xuebao, Gongxueban 42, 77 (2012).
  13. M. D. Hou, P. H. Li, and Z. Z. Hu, Chin. Surfact. Deterg. Cosmet. 48, 243 (2018).
  14. Accelrys Inc., Materials Studio CP/DK, Version 8.0 (Accelry Inc., San Diego, 2014).
  15. K. R. Harris, H. N. Lam, and E. Raedt, Mol. Phys. 71, 1205 (1990).
  16. Y. H. P. And and L. J. Chen, J. Chem. Eng. Data 43, 665 (1998).
  17. H. Sun, J. Phys. Chem. B 102, 7338 (1998).
  18. H. Sun, P. Ren, and J. R. Fried, Comput. Theor. Polym. Sci. 8, 229 (1998).
  19. A. Y. Toukmaji and J. A. Board, Jr., Comput. Phys. Commun. 95, 73 (1996).
  20. OriginLab Corp., Origin 8.0 User Guide DB/OL (OriginLab, 2008).
  21. B. J. Love, F. P. Ruinet, and F. Teyssandier, J. Polym. Sci., Part B: Polym. Phys. 46, 2319 (2008).
  22. J. Alejandre, D. J. Tildesley, and G. A. Chapela, J. Chem. Phys. 102, 4574 (1995).
  23. J. L. Rivera, M. Predota, and A. A. Chialvo, Chem. Phys. Lett. 357, 189 (2002).
  24. J. L. Rivera, C. Mccabe, and P. T. Cummings, Phys. Rev. E 67, 011603 (2003)