Examples



mdbootstrap.com



 
Статья
2022

Synthesis and Aminomethylation of 2-Amino-4-(2-chlorophenyl)-6-(dicyanomethyl)-1,4-dihydropyridine-3,5-dicarbonitrile N-Methylmorpholinium Salt


A. O. KurskovaA. O. Kurskova, V. V. DotsenkoV. V. Dotsenko, K. A. FrolovK. A. Frolov, N. A. AksenovN. A. Aksenov, I. V. AksenovaI. V. Aksenova, B. S. KrivokolyskoB. S. Krivokolysko, A. A. PeresypkinaA. A. Peresypkina, E. A. ChigorinaE. A. Chigorina, S. G. KrivokolyskoS. G. Krivokolysko
Российский журнал общей химии
https://doi.org/10.1134/S1070363222050061
Abstract / Full Text

Sequential reaction of 2-chlorobenzaldehyde, cyanothioacetamide, and malononitrile dimer in the presence of an excess of N-methylmorpholine resulted in the formation of N-methylmorphlinium salt of 2-amino-4-(2-chlorophenyl)-6-(dicyanomethyl)-1,4-dihydropyridine-3,5-dicarbonitrile. The resulting salt reacts under Mannich conditions with primary amines and an excess of formaldehyde to form substituted 2-alkylamino-4-(dicyanomethylene)-3,7-diazabicyclo[3.3.1]non-2-ene-1,5-dicarbonitriles. Structure of the key compound was confirmed by single crystal X-ray diffraction analysis.

Author information
  • ChemEx Laboratory, V. Dahl Lugansk State University, 91034, Lugansk, UkraineA. O. Kurskova, K. A. Frolov & S. G. Krivokolysko
  • Kuban State University, 350040, Krasnodar, RussiaV. V. Dotsenko
  • North Caucasian Federal University, 355009, Stavropol, RussiaV. V. Dotsenko, N. A. Aksenov & I. V. Aksenova
  • Lugansk State Medical University named after St. Luke, 91045, Lugansk, UkraineB. S. Krivokolysko & S. G. Krivokolysko
  • Belgorod State National Research University, 308015, Belgorod, RussiaA. A. Peresypkina
  • National Research Center “Kurchatov Institute” – IREA, 107076, Moscow, RussiaE. A. Chigorina
  • National Research Center “Kurchatov Institute”, 123182, Moscow, RussiaE. A. Chigorina
References
  1. Mittelbach, M., Monatsh. Chem., 1985, vol. 116, no. 5, p. 689. https://doi.org/10.1007/BF00798796
  2. Dotsenko, V.V., Krivokolysko, S.G., and Semenova, A.M., Chem. Heterocycl. Compd., 2018, vol. 54, no. 11, p. 989. https://doi.org/10.1007/s10593-018-2383-y
  3. Shaabani, A. and Hooshmand, S.E., Mol. Divers., 2018, vol. 22, no. 1, p. 207. https://doi.org/10.1007/s11030-017-9807-y
  4. Kurskova, A.O., Dotsenko, V.V., Frolov, K.A., Aksenov, N.A., Aksenova, I.V., Shcherbakov, S.V., Ovcharov, S.N., Krivokolysko, D.S., and Krivokolysko, S.G., Russ. J. Gen. Chem., 2021, vol. 91, no. 6, p. 971. https://doi.org/10.1134/S1070363221060037
  5. Kurskova, A.O., Dotsenko, V.V., Frolov, K.A., Aksenov, N.A., Aksenova, I.V., Krivokolysko, B.S., and Krivokolysko, S.G., Russ. J. Gen. Chem., 2021, vol. 91, no. 8, p. 1471. https://doi.org/10.1134/S1070363221080089
  6. Helmy, N.M., El-Baih, F.E.M., Al-Alshaikh, M.A., and Moustafa, M.S., Molecules, 2011, vol. 16, no. 1, p. 298. https://doi.org/10.3390/molecules16010298
  7. Fahmy, S.M., Abd Allah, S.O., and Mohareb, R.M., Synthesis, 1984, no. 11, p. 976. https://doi.org/10.1055/s-1984-31045
  8. Abdelrazek, F.M., Michael, F.A., and Mohamed, A.E., Arch. Pharm., 2006, vol. 339, no. 6, p. 305. https://doi.org/10.1002/ardp.200500259
  9. Hafiz, I.S.A., Rashad, M.E.E., Mahfouz, M.A.E., and Elnagdi, M.H., J. Chem. Res. Miniprint, 1998, no. 11, p. 2946.
  10. Fadda, A. and Refat, H., Monatsh. Chem., 1999, vol. 130, p. 1487. https://doi.org/10.1007/s007060050308
  11. Zaki, M.E.A., Fadda, A.A., Samir, K., and Amer, F.A., Chem. Heterocycl. Compd., 2003, vol. 39, p. 1242. https://doi.org/10.1023/B:COHC.0000008274.04008.c2
  12. Kandeel, Z.E.-S., Abdelrazek, F.M., and Elnagdi, M.H., Heterocycles, 1986, vol. 24, no. 9, p. 2455. https://doi.org/10.3987/R-1986-09-2455
  13. Sharanin, Yu.A., Krivokolysko, S.G., and Dyachenko, V.D., Russ. J. Org. Chem., 1994, vol. 30, no. 4, p. 620.
  14. Fuentes, L., Vaquero, J.J., and Soto, J.L., Synthesis, 1982, vol. 1982, no. 4, p. 320. https://doi.org/10.1055/s-1982-29798
  15. Bardasov, I.V., Alekseeva, A.U., Ershov, O.V., and Belikov, M.Yu., Tetrahedron Lett., 2015, vol. 56, no. 40, p. 5434. https://doi.org/10.1016/j.tetlet.2015.08.013
  16. Elnagdi, M.H., Harb, A.F., Elghandour, A.H.H., Hussien, A.H.M., and Metwally, S.A.M., Gazz. Chim. Ital., 1992, vol. 122, no. 8, p. 299.
  17. Dyachenko, V.D. and Litvinov, V.P., Doklady Chem., 1997, vol. 355, no. 1–3, p. 153.
  18. Mohareb, R.M., Abouzied, A.S., and Abbas, N.S., Anti-Cancer Agents Med. Chem., 2017, vol. 17, no. 14, p. 1951. https://doi.org/10.2174/1871520617666170725153523
  19. El-Sayed, E.H. and Fadda, A.A., J. Heterocycl. Chem., 2018, vol. 55, no. 10, p. 2251. https://doi.org/10.1002/jhet.3276
  20. Hassan, M.I. and Hassane, A., Egypt. J. Chem., 2019, vol. 62, Special Issue (Part 1) Innovation in Chemistry, p. 103. https://doi.org/10.21608/EJCHEM.2019.14725.1907
  21. Ievlev, M.Y., Mayorov, N.S., Shishlikova, M.A., Belikov, M.Y., Bardasov, I.N., and Ershov, O.V., Chem. Heterocycl. Compd., 2021, vol. 57, no. 10, p. 1051. https://doi.org/10.1007/s10593-021-03021-2
  22. Chunikhin, S.S., Ershov, O.V., Yatsenko, A.V., Tafeenko, V.A., Dmitrieva, N.E., and Ievlev, M.Y., CrystEngComm, 2021, vol. 23, no. 15, p. 2816. https://doi.org/10.1039/D1CE00028D
  23. Ershov, O.V., Chunikhin, S.S., Ievlev, M.Y., Belikov, M.Y., and Tafeenko, V.A., CrystEngComm, 2019, vol. 21, no. 36, p. 5500. https://doi.org/10.1039/C9CE01089K
  24. Dotsenko, V.V., Ismiev, A.I., Khrustaleva, A.N., Frolov, K.A., Krivokolysko, S.G., Chigorina, E.A., Snizhko, A.P., Gromenko, V.M., Bushmarinov, I.S., Askerov, R.K., Pekhtereva, T.M., Suykov, S.Yu., Papayanina, E.S., Mazepa, A.V., and Magerramov, A.M., Chem. Heterocycl. Compd., 2016, vol. 52, no. 7, p. 473. https://doi.org/10.1007/s10593-016-1918-3
  25. Tverdokhleb, N.M., Khoroshilov, G.E., and Dotsenko, V.V., Tetrahedron Lett., 2014, vol. 55, p. 6593. https://doi.org/10.1016/j.tetlet.2014.10.046
  26. Dotsenko, V.V., Chigorina, E.A., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2017, vol. 53. N. 5, p. 626. https://doi.org/10.1007/s10593-017-2103-z
  27. Dyadyuchenko, L.V., Dotsenko, V.V., Muraviev, V.S., Dmitrieva, I.G., Aksenov, N.A., and Aksenova, I.V., Russ. Chem. Bull., 2021, vol. 70, no. 7, p. 1363. https://doi.org/10.1007/s11172-021-3224-1
  28. Dotsenko, V.V., Bespalov, A.V., Russkikh, A.A., Kindop, V.K., Aksenov, N.A., Aksenova, I.V., Shcherbakov, S.V., and Ovcharov, S.N., Russ. J. Gen. Chem., 2021, vol. 91, no. 6, p. 951. https://doi.org/10.1134/S1070363221060013
  29. Sadek, K.U., Selim, M.A., Elmaghraby, M.A., and Elnagdi, M.H., Pharmazie, 1993, vol. 48, no. 6, p. 419. https://doi.org/10.24355/dbbs.084-201901181427-0
  30. Dyachenko, V.D., Dyachenko, I.V., and Nenajdenko, V.G., Russ. Chem. Rev., 2018, vol. 87, no. 1, p. 1. https://doi.org/10.1070/RCR4760
  31. Maggeramov, A.M., Shikhaliev, N.G., Dyachenko, V.D., Dyachenko, I.V., Nenaidenko, V.G., α-Tsyanotioatsetamid (α-Cyanothioacetamide), Moscow: Tekhnosfera, 2018, 224 p.
  32. Brunskill, J.S.A., De, A., and Ewing, D.F., J. Chem. Soc. Perkin Trans. 1, 1978, no. 6, p. 629. https://doi.org/10.1039/p19780000629
  33. Dotsenko, V.V., Krivokolysko, S.G., Chernega, A.N., and Litvinov, V.P., Monatsh. Chem., 2007, vol. 138, no. 1, p. 35. https://doi.org/10.1007/s00706-006-0569-y
  34. Dotsenko, V.V., Frolov, K.A., Chigorina, E.A., Khrustaleva, A.N., Bibik, E. Yu., and Krivokolysko, S.G., Russ. Chem. Bull., 2019, vol. 68, no. 4, p. 691. https://doi.org/10.1007/s11172-019-2476-5
  35. Orlov, A.A., Eletskaya, A.A., Frolov, K.A., Golinets, A.D., Palyulin, V.A., Krivokolysko, S.G., Kozlovskaya, L.I., Dotsenko, V.V., and Osolodkin, D.I., Arch. Pharm., 2018, vol. 351, no. 6, paper no. 1700353. https://doi.org/10.1002/ardp.201700353
  36. Dotsenko, V.V., Frolov, K.A., and Krivokolysko, S.G., Chem. Heterocycl. Compd., vol. 48, no. 4, p. 642. https://doi.org/10.1007/s10593-012-1038-7
  37. Liang, D., Xiao, W.-J., and Chen, J.-R., Synthesis, 2020, vol. 52, no. 17, p. 2469. https://doi.org/10.1055/s-0040-1707160
  38. Tomassoli, I. and Gündisch, D., Curr. Top. Med. Chem., 2016, vol. 16, no. 11, p. 1314. https://doi.org/10.2174/1568026615666150915111434
  39. Nonat, A.M., Roux, A., Sy, M., and Charbonnière, L.J., Dalton Trans., 2019, vol. 48, no. 44, p. 16476. https://doi.org/10.1039/C9DT03480C
  40. Comba, P., Kerscher, M., Rück, K., and Starke, M., Dalton Trans., 2018, vol. 47, no. 28, p. 9202. https://doi.org/10.1039/C8DT01108G
  41. Sacchetti, A. and Rossetti, A., Eur. J. Org. Chem., 2021, vol. 2021, no. 10, p. 1491. https://doi.org/10.1002/ejoc.202001439
  42. Stephan, H., Walther, M., Fähnemann, S., Ceroni, P., Molloy, J.K., Bergamini, G., Heisig, F., Müller, C.E., Kraus, W., and Comba, P., Chem. Eur. J., 2014, vol. 20, no. 51, p. 17011. https://doi.org/10.1002/chem.201404086
  43. Mozhaitsev, E.S., Ponomarev, K.Y., Patrusheva, O.S., Medvedko, A.V., Dalinger, A.I., Rogachev, A.D., Komarova, N.I., Korchagina, D.V., Suslov, E.V., Volcho, K.P., Salakhutdinov, N.F., and Vatsadze, S.Z., Russ. J. Org. Chem., 2020, vol. 56, no. 11, p. 1969. https://doi.org/10.1134/S1070428020110123
  44. Suslov, E.V., Ponomarev, K.Y., Patrusheva, O.S., Kuranov, S.O., Okhina, A.A., Rogachev, A.D., Munkuev, A.A., Ottenbacher, R.V., Dalinger, A.I., Kalinin, M.A., Vatsadze, S.Z., Volcho, K.P., and Salakhutdinov, N.F., Molecules, 2021, vol. 26, no. 24, p. 7539. https://doi.org/10.3390/molecules26247539
  45. Dalinger, A.I., Medved’ko, A.V., Kalinin, M.A., Sereda, V.A., Churakov, A.V., and Vatsadze, S.Z., Russ. Chem. Bull., 2021, vol. 70, no. 5, p. 1002. https://doi.org/10.1007/s11172-021-3180-9
  46. Medved’ko, A.V., Dalinger, A.I., Nuriev, V.N., Semashko, V.S., Filatov, A.V., Ezhov, A.A., Churakov, A.V., Howard, J.A.K, Shiryaev, A.A., Baranchikov, A.E., Ivanov, V.K., and Vatsadze, S.Z., Nanomaterials, 2019, vol. 9, no. 1, p. 89. https://doi.org/10.3390/nano9010089
  47. Antipin, I.S., Alfimov, M.V., Arslanov, V.V., Burilov, V.A., Vatsadze, S.Z., Voloshin, Ya.Z., Volcho, K.P., Gorbatchuk, V.V., Gorbunova, Yu.G., Gromov, S.P., Dudkin, S.V., Zaitsev, S.Yu., Zakharova, L.Ya, Ziganshin, M.A., Zolotukhina, A.V., Kalinina, M.A., Karakhanov, E.A., Kashapov, R.R., Koifman, O.I., Konovalov, A.I., Korenev, V.S., Maksimov, A.L., Mamardashvili, N.Zh., Mamardashvili, G.M., Martynov, A.G., Mustafina, A.R., Nugmanov, R.I., Ovsyannikov, AS, Padnya, P.L., Potapov, A.S., Selektor, S.L., Sokolov, M.N., Solovieva, S.E., Stoikov, I.I., Stuzhin, P.A., Suslov, E.V., Ushakov, E.N., Fedin, V.P., Fedorenko, S.V., Fedorova, O.A., Fedorov, Yu.V., Chvalun, S.N., Tsivadze, A.Yu., Shtykov, S.N., Shurpik, D.N., Shcherbina, M.A., and Yakimova, L.S., Russ. Chem. Rev., 2021, vol. 90, no. 8, p. 895. https://doi.org/10.1070/RCR5011
  48. Vatsadze, S.Z., Medved’ko, A.V., Bodunov, A.A., and Lyssenko, K.A., Mendeleev Commun., 2020, vol. 30, no. 3, p. 344. https://doi.org/10.1016/j.mencom.2020.05.028
  49. Medved’ko, A.V., Krut’ko, D.P., Gaisen, S.V., Churakov, A.V., Minyaev, M.E., Moiseeva, A.A., Lemenovsky, D.A., Yu, H., Wang, L., and Vatsadze, S.Z., J. Organomet. Chem., 2021, vol. 949, paper no. 121945. https://doi.org/10.1016/j.jorganchem.2021.121945
  50. Shcherbakov, D., Baev, D., Kalinin, M., Dalinger, A., Chirkova, V., Belenkaya, S., Khvostov, A., Krut’ko, D., Medved’ko, A., Volosnikova, E., Sharlaeva, E., Shanshin, D., Tolstikova, T., Yarovaya, O., Maksyutov, R., Salakhutdinov, N., and Vatsadze, S., ACS Med. Chem. Lett., 2022, Vol. 13, no. 1, p. 140. https://doi.org/10.1021/acsmedchemlett.1c00299
  51. Yang, J., Kwon, S., Bae, S.H., Park, K.M., Yoon, C., Lee, J.H., and Seok, C., J. Chem. Inf. Model., 2020, vol. 60, no. 6, p. 3246. https://doi.org/10.1021/acs.jcim.0c00104
  52. GalaxyWEB. A web server for protein structure prediction, refinement, and related methods. Computational Biology Lab, Department of Chemistry, Seoul National University, S. Korea. http://galaxy.seoklab.org/index.html
  53. Ko, J., Park, H., Heo, L., and Seok, C., Nucleic Acids Res., 2012, vol. 40, no. W1, p. W294. https://doi.org/10.1093/nar/gks493
  54. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., J. Сomput. Chem., 2004, vol. 25, no. 13, p. 1605. https://doi.org/10.1002/jcc.20084
  55. UCSF Chimera. Visualization system for exploratory research and analysis developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, US. https://www.rbvi.ucsf.edu/chimera/
  56. Dotsenko, V.V., Krivokolysko, S.G., Polovinko, V.V., and Litvinov, V.P., Chem. Heterocycl. Compd., 2012, vol. 48, no. 2, p. 309. https://doi.org/10.1007/s10593-012-0991-5
  57. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726
  58. Sheldrick, G.M., Acta Crystallogr. (A), 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930
  59. Sheldrick, G.M., Acta Crystallogr. (C), 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218