Статья
2019
Abstract / Full Text

The mixed alkaline effect (MAE) is a well-known anomaly in glasses. It results in a non-linear response of various physical properties on mixing of alkali ions in the glass. In this paper, the MAE is studied in antimony oxides based glasses 60Sb2O3–20MoO3–(20 – x)Li2O–xNa2O and 60Sb2O3–20MoO3–(20 – x)Li2O–xK2O (in mol %). The influence of Na/Li and K/Li ratios on ionic AC and DC conductivities, and Tg is presented. Dependences of Tg on x, in both types of glasses, have typical minima at x ≅ 10, it means that the minima take place at approximately equal concentrations of both mixed alkali ions. The minimum for K2O containing glasses is deeper, probably due to a larger difference between ionic radii of K+ and Li+ ions. In glasses with one type of alkali ion, Tg decreases in the sequence: K → Li → Na. Temperature dependences of the DC conductivity obey Arrhenius-like relation. The conductivity steeply decreases with increasing Na or K content due to the larger ionic radius of both ions comparing to that of Li ions. At the same time, the conduction activation energy goes through a flat maximum at x = 15 (1.21 eV) for Na2O modifier and at x = 5 (1.16 eV), for K2O modifier. In antimony oxide based glasses, Li+, Na+, and K+ ions are modifiers and dominant charge-carriers. Due to larger ionic radii of Na+, and K+, the decrease of the conductivity after their addition is reasonable.

Author information
  • Faculty of Materials Science and Technology, Slovak University of Technology, 91724, Trnava, Slovakia

    M. Kubliha, O. Bosak & S. Minarik

  • Laboratoire de physique photonique et nanomatériaux multifonctionnels, University of Biskra, BP 145, Biskra, Algeria

    D. Maache & M. T. Soltani

  • University of Constantin the Philosopher in Nitra, Department of Physics, 94974, Nitra, Slovakia

    V. Trnovcova

  • University of Novi Sad, Faculty of Science, Department of Physics, 21000, Novi Sad, Serbia

    S. Lukic-Petrovic

References
  1. Day, D.E., J. Non-Cryst. Solids, 1976, vol. 21, pp. 343–372.
  2. Isard, J.O., J. Non-Cryst. Solids, 1969, vol. 1, pp. 235–261.
  3. LaCourse, W.C. and Cormack, A.N., Structural influences on the mixed alkali effect in glasses, Trans. Am. Crystallogr. Assoc., 1991, vol. 27, pp. 211–224.
  4. Ahmed, A.A. and Abbas, A.F., J. Non-Cryst. Solids, 1986, vol. 80, pp. 371–378.
  5. Samee, M.A., Ahmmad, S.K., Taqiullah, S.Md., Edukondalu, A., Bale, S., and Rahman, S., Mixed alkali effect in (40 – x)K2O–xLi2O–10Na2O–50B2O3 glasses-physical and optical absorption studies, Int. J. Modern Phys.: Conf. Ser., 2013, vol. 22, pp. 261–267. https://doi.org/10.1142/S2010194513010210
  6. Kjeldsen, J., Smedskjaer, M.M., Mauro, J.C., and Yue, Y., J. Non-Cryst. Solids, 2014, vol. 406, pp. 22–26.
  7. Megahed, A.A., Phys. Chem. Glasses, 1999, vol. 40, pp. 130–134.
  8. Shelby, J.E., Introduction to Glass Science and Technology, Cambridge: Royal Society of Chemistry, 1997.
  9. Ouannes, K., Soltani, M.T., Poulain, M., Boulon, G., Alombert-Goget, G., Guyot, Y., Pillonnet, A., and Lebbou, K., J. Alloys Compd., 2014, vol. 603, pp. 132–135.
  10. Zavadil, J., Ivanova, Z.G., Kostka, P., Hamzaoui, M., and Soltani, M.T., J. Alloys Compd., 2014, vol. 611, pp. 111–116.
  11. Soltani, M.T., Hamzaoui, M., Houhou, S., Touiri, H., Bediar, L., Ghemri, A.M., and Petkova, P., Acta Phys. Polonica A, 2013, vol. 123, pp. 227–229.
  12. Hamzaoui, M., Azri, S., Soltani, M.T., Lebullenger, R., and Poulain, M., Phys. Scr. T, 2013, vol. 157, p. 014029.
  13. Baazouzi, M., Soltani, M.T., Hamzaoui, M., Poulain, M., and Troles, J., Opt. Mater., 2013, vol. 36, pp. 500–504.
  14. Soltani, M.T., Boutarfaia, A., Makhloufi, R., and Poulain, M., J. Phys. Chem. Solids, 2003, vol. 64, pp. 2307–2312.
  15. de Araujo, R.E., de Araujo, C.B., Poirier, G., Poulain, M., and Messaddeq, Y., Appl. Phys. Lett., 2002, vol. 81, pp. 4694–4696.
  16. Hamzaoui, M., Soltani, M.T., Baazouzi, M., Tioua, B., Ivanova, Z.G., Lebullenger, R., Poulain, M., and Zavadil, J., Phys. Status Solidi B, 2012, vol. 249, pp. 2213–2221.
  17. Bosak, O., Kostka, P., Minarik, S., Trnovcova, V., Podolinciakova, J., and Zavadil, J., J. Non-Cryst. Solids, 2013, vol. 377, pp. 74–78.
  18. Legouera, M., Rahal, F., Kostka, P., and Poulain, M., Ann. Chim. Sci. Materiaux, 2009, vol. 34, pp. 249–266.
  19. Kostka, P., Lezal, D., Poulain, M., Pedlikova, J., and Novotna, M., Solid State Phenom., 2003, vols. 90–91, pp. 235–240.
  20. Minelly, J. and Ellison, A., Opt. Fiber Technol., 2002, vol. 8, pp. 123–138.
  21. Kubliha, M., Investigating Structural Changes and Defects of Non-Metallic Materials via Eectrical Methods, 1st ed., Dresden : Forschungszentrum Dresden-Rossendorf, 2009.
  22. Kalužný, J., Kubliha, M., Labaš, V., Poulain, M., and Taibi, Y., J. Non-Cryst. Solids, 2009, vol. 355, pp. 2031–2034.
  23. Kubliha, M., Soltani, M.T., Trnovcová, V., Legouera, M., Labaš, V., Kostka, P., Le Coq, D., and Hamzaoui, M., J. Non-Cryst. Solids, 2015, vol. 428, pp. 42–48.
  24. Labaš, V., Poulain, M., Kubliha, M., Trnovcová, V., and Goumeidane, F., J. Non-Cryst. Solids, 2013, vol. 377, pp. 66–69.
  25. Papathanassiou, A.N., J. Phys. Chem. Solids, 2005, vol. 66, pp. 1849–1850.
  26. Bunker, B.C., Arnold, G.W., Beauchamp, E.K., and Day, D.E., J. Non-Cryst. Solids, 1983, vol. 58, pp. 295–322.
  27. Bunde, A., Ingram, M.D., and Maass, P., J. Non-Cryst. Solids, 1994, vols. 172–174, pp. 1222–1236.
  28. Bunde, A., Ingram, M.D., Maass, P., and Ngai, K.L., J. Non-Cryst. Solids, 1991, vols. 131–133, pp. 1109–1112.
  29. Balasubramanian, S. and Rao, K.J., J. Non-Cryst. Solids, 1995, vol. 181, pp. 157–174.
  30. Jonscher, A.K., Nature, 1977, vol. 267, p. 673.
  31. Cramer, C., Brunklaus, S., Ratai, E., and Gao, Y., Phys. Rev. Lett., 2003, vol. 91, p. 266601.
  32. Chen, R.H., Yang, R.Y., and Stern, S.C., J. Phys. Chem. Solids, 2002, vol. 63, p. 2069.
  33. Louati, B., Gargouri, M., Guidara, K., and Mhiri, T., J. Phys. Chem. Solids, 2005, vol. 66, pp. 762–765.
  34. Papathanassiou, A.N., J. Non-Cryst. Solids, 2006, vol. 52, p. 5444.
  35. Papathanassiou, A.N., Sakellis, I., and Grammatikakis, J., Appl. Phys. Lett., 2007, vol. 91, p. 122911.