Examples



mdbootstrap.com



 
Статья
2021

Synthesis and Aminomethylation of 6-Amino-2-(dicyanomethylene)-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile Morpholinium Salt


A. O. KurskovaA. O. Kurskova, V. V. DotsenkoV. V. Dotsenko, K. A. FrolovK. A. Frolov, N. A. AksenovN. A. Aksenov, I. V. AksenovaI. V. Aksenova, B. S. KrivokolyskoB. S. Krivokolysko, S. G. KrivokolyskoS. G. Krivokolysko
Российский журнал общей химии
https://doi.org/10.1134/S1070363221080089
Abstract / Full Text

Condensation of benzaldehyde with malononitrile and malononitrile dimer (2-aminopropene-1,1,3-tricarbonitrile) in the presence of an excess of morpholine in ethanol afforded the morpholinium salt of 6-amino-2-(dicyanomethylene)-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile. The latter, under the Mannich reaction conditions with the participation of primary amines and formaldehyde, gives 6-amino-2-(dicyanomethylene)-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile, 2-(dicyanomethylene)-6-(hydroxymethylamino)-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile or zwitterionic aminomethylation products, 6-(ammoniomethylamino)-3,5-dicyano-4-phenylpyridin-2-yl)dicyanomethanides. Structure of the obtained compounds was established using 2D NMR spectroscopy and single crystal X-ray diffraction analysis. In silico predictive analysis of the biological activity of new compounds was carried out.

Author information
  • Laboratory “ChemEx”, V. Dal Lugansk State University, 91034, Lugansk, UkraineA. O. Kurskova, K. A. Frolov & S. G. Krivokolysko
  • Kuban State University, 350040, Krasnodar, RussiaV. V. Dotsenko
  • North Caucasus Federal University, 355009, Stavropol, RussiaV. V. Dotsenko, N. A. Aksenov & I. V. Aksenova
  • St. Luke Lugansk State Medical University, 91045, Lugansk, UkraineB. S. Krivokolysko & S. G. Krivokolysko
References
  1. Dotsenko, V.V., Krivokolysko, S.G., and Semenova, A.M., Chem. Heterocycl. Compd., 2018, vol. 54, no. 11, p. 989. https://doi.org/10.1007/s10593-018-2383-y
  2. Shaabani, A. and Hooshmand, S.E., Mol. Divers., 2018, vol. 22, p. 207. https://doi.org/10.1007/s11030-017-9807-y
  3. Ershov, O.V. and Bardasov, I.N., Chem. Heterocycl. Compd., 2017, vol. 53, no. 11, p. 1178. https://doi.org/10.1007/s10593-018-2190-5
  4. Bardasov, I.N., Alekseeva, A.U., Chunikhin, S.S., Tafeenko, V.A., and Ershov, O.V., Tetrahedron Lett., 2017, vol. 58, no. 41, p. 3919. https://doi.org/10.1016/j.tetlet.2017.08.076
  5. Carrión, F., Mont, N., Batllori, X., Borrell, J.I., and Teixidó, J., Tetrahedron, 2007, vol. 63, no. 1, p. 215. https://doi.org/10.1016/j.tet.2006.10.025
  6. Carrión, F., Pettersson, S.H., Rifá, J., Farran, J., Batllori, X., Borrell, J.I., and Teixidó, J., Mol. Divers., 2010, vol. 14, no. 4, p. 755. https://doi.org/10.1007/s11030-009-9222-0
  7. Tu, M.S., Li, Y., Wang, X., Jiang, B., Wang, S.L., and Tu, S.J., RSC Adv., 2013, vol. 3, no. 12, p. 3877. https://doi.org/10.1039/c3ra22328
  8. Bardasov, I.N., Alekseeva, A.U., Ershov, O.V., and Belikov, M.Y., Tetrahedron Lett., 2015, vol. 56, no. 40, p. 5434. https://doi.org/10.1016/j.tetlet.2015.08.013
  9. Mohareb, R.M., Abouzied, A.S., and Abbas, N.S., Anti-Cancer Agents Med. Chem., 2017, vol. 17, no. 14, p. 1951. https://doi.org/10.2174/1871520617666170725153523
  10. Fuentes, L., Vaquero, J.J., and Soto, J.L., Synthesis, 1982, no. 4, p. 320. https://doi.org/10.1055/s-1982-29798
  11. Helmy, N.M., El-Baih, F.E.M., Al-Alshaikh, M.A., and Moustafa, M.S., Molecules, 2011, vol. 16, no. 1, p. 298. https://doi.org/10.3390/molecules16010298
  12. Fuentes, L., Márquez, C., Contreras, M.C., Lorenzo, M.J., Fonseca, I., Sanz-Aparicio, J., and Balcazar, J.L., J. Heterocycl. Chem., 1995, vol. 32, no. 1, p. 29. https://doi.org/10.1002/jhet.5570320105
  13. Khrustaleva, A.N., Frolov, K.A., Dotsenko, V.V., Dmitrienko, A.O., Bushmarinov, I.S., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2014, vol. 50, no. 1, p. 46. https://doi.org/10.1007/s10593-014-1447-x
  14. Dotsenko, V.V., Krivokolysko, S.G., and Litvinov, V.P., Chem. Heterocycl. Compd., 2007, vol. 43, no. 4, p. 517. https://doi.org/10.1007/s10593-007-0080-3
  15. Khrustaleva, A.N., Frolov, K.A., Dotsenkо, V.V., and Krivokolysko, S.G., Russ. J. Org. Chem., 2014, vol. 50, no. 12, p. 1804. https://doi.org/10.1134/S107042801412015X
  16. Dotsenko, V.V., Suikov, S.Y., Pekhtereva, T.M., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2013, vol. 49, no. 7, p. 1009. https://doi.org/10.1007/s10593-013-1339-5
  17. Dotsenko, V.V., Frolov, K.A., Chigorina, E.A., Khrustaleva, A.N., Bibik, E.Yu., and Krivokolysko, S.G., Russ. Chem. Bull., 2019, vol. 68, no. 4, p. 691. https://doi.org/10.1007/s11172-019-2476-5
  18. Dotsenko, V.V., Krivokolysko, S.G., Chernega, A.N., and Litvinov, V.P., Russ. Chem. Bull., 2003, vol. 52, no. 4, p. 969. https://doi.org/10.1023/A:1024420930528
  19. Tverdokhleb, N.M., Khoroshilov, G.E., and Dotsenko, V.V., Tetrahedron Lett., 2014, vol. 55, p. 6593. https://doi.org/10.1016/j.tetlet.2014.10.046
  20. Dotsenko, V.V., Chigorina, E.A., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2017, vol. 53. N. 5, p. 626. https://doi.org/10.1007/s10593-017-2103-z
  21. Dotsenko, V.V., Bespalov, A.V., Russkikh, A.A., Kindop, V.K., Aksenov, N.A., Aksenova, I.V., Shcherbakov, S.V., and Ovcharov, S.N., Russ. J. Gen. Chem., 2021, vol. 91, no. 6. Р. 951. https://doi.org/10.1134/S1070363221060013
  22. Clarke, H.T., Gillespie, H.B., and Weisshaus, S.Z., J. Am. Chem. Soc., 1933, vol. 55, no. 11, p. 4571. https://doi.org/10.1021/ja01338a041
  23. Pine, S.H., J. Chem. Educ., 1968, vol. 45, no. 2, p. 118. https://doi.org/10.1021/ed045p118
  24. Grigor’ev, A.A., Shtyrlin, N.V., Gabbasova, R.R., Zeldi, M.I., Grishaev, D.Yu., Gnezdilov, O.I., Balakin, K.V., Nasakin, O.E., and Shtyrlin, Y.G., Synth. Commun., 2018, vol. 48, no. 17, p. 2288. https://doi.org/10.1080/00397911.2018.1501487
  25. Kanani, M.B. and Patel, M.P., Med. Chem. Res., 2013, vol. 22, p. 2912. https://doi.org/10.1007/s00044-012-0292-7
  26. Makawana, J.A., Patel, M.P., and Patel, R.G., Med. Chem. Res., 2012, vol. 21, p. 616. https://doi.org/10.1007/s00044-011-9568-6
  27. May, B.C., Zorn, J.A., Witkop, J., Sherrill, J., Wallace, A.C., Legname, G., Prusiner, S.B., and Cohen, F.E., J. Med. Chem., 2007, vol. 50, no. 1, p. 65. https://doi.org/10.1021/jm061045z
  28. Perrier, V., Wallace, A.C., Kaneko, K., Safar, J., Prusiner, S.B., and Cohen, F.E., Proc. Natl. Acad. Sci., 2000, vol. 97, p. 6073. https://doi.org/10.1073/pnas.97.11.6073
  29. Reddy, T.R.K., Mutter, R., Heal, W., Guo, K., Gillet, V.J., Pratt, S., and Chen, B., J. Med. Chem., 2006, vol. 49, p. 607. https://doi.org/10.1021/jm050610f
  30. Abbas, H.A.S., El Sayed, W.A., and Fathy, N.M., Eur. J. Med. Chem., 2010, vol. 45, p. 973. https://doi.org/10.1016/j.ejmech.2009.11.039
  31. Ali, M., Khan, K.M., Mahdavi, M., Jabbar, A., Shamim, S., Salar, U., Taha, M., Perveen, S., Larijani, B., and Faramarzi, M.A., Bioorg. Chem., 2020, vol. 100, Paper N 103879. https://doi.org/10.1016/j.bioorg.2020.103879
  32. Brandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C., and Kunick, C., Eur. J. Med. Chem., 2010, vol. 45, p. 2919. https://doi.org/10.1016/j.ejmech.2010.03.017
  33. Auchampach, J.A., Kreckler, L.M., Wan, T.C., Maas, J.E., van der Hoeven, D., Gizewski, E., Narayanan, J., and Maas, G.E., J. Pharmacol. Exp. Ther., 2009, vol. 329, p. 2. https://doi.org/10.1124/jpet.108.148270
  34. Beukers, M.W., Chang, L.C.W., von Frijtag Drabbe Kunzel, J.K., Mulder-Krieger, T., Spanjersberg, R.F., Brussee, J., and IJzerman, A.P., J. Med. Chem., 2004, vol. 47, p. 3707. https://doi.org/10.1021/jm049947s
  35. Chang, L.C.W., von Frijtag Drabbe Kunzel, J.K., Mulder-Krieger, T., Spanjersberg, R.F., Roerink, S.F., van den Hout, G., Beukers, M.W., Brussee, J., and IJzerman, A.P., J. Med. Chem., 2005, vol. 48, p. 2045. https://doi.org/10.1021/jm049597+
  36. Betti, M., Catarzi, D., Varano, F., Falsini, M., Varani, K., Vincenzi, F., Dal Ben, D., Lambertucci, C., and Colotta, V., Eur. J. Med. Chem., 2018, vol. 150, p. 127. https://doi.org/10.1016/j.ejmech.2018.02.081
  37. Louvel, J., Guo, D., Soethoudt, M., Mocking, T.A.M., Lenselink, E.B., Mulder-Krieger, T., Heitman, L.H., and IJzerman, A.P., Eur. J. Med. Chem., 2015, vol. 101, p. 681. https://doi.org/10.1016/j.ejmech.2015.07.023
  38. Baltos, J.A., Vecchio, E.A., Harris, M.A., Qin, C.X., Ritchie, R.H., Christopoulos, A., White, P.J., and May, L.T., Biochem. Pharmacol., 2017, vol. 135, p. 79. https://doi.org/10.1016/j.bcp.2017.03.014
  39. Bott-Flügel, L., Bernshausen, A., Schneider, H., Luppa, P., Zimmermann, K., Albrecht-Küpper, B., Kast, R., Laugwitz, K.-L., Ehmke, H., Knorr, A., and Seyfarth, M., PloS One, 2011, vol. 6, no. 3. Paper N e18048. https://doi.org/10.1371/journal.pone.0018048
  40. Meibom, D., Albrecht-Küpper, B., Diedrichs, N., Hübsch, W., Kast, R., Krämer, T., Krenz, U., Lerchen, H.-G., Mittendorf, J., Nell, P.G., Süssmeier, F., Vakalopoulos, A., and Zimmermann, K., ChemMedChem, 2017, vol. 12, no. 10, p. 728. https://doi.org/10.1002/cmdc.201700151
  41. Voors, A.A., Bax, J.J., Hernandez, A.F., Wirtz, A.B., Pap, A.F., Ferreira, A.C., Senni, M., van der Laan, M., and Butler, J., Eur. J. Heart. Fail., 2019, vol. 21, no. 11, p. 1426. https://doi.org/10.1002/ejhf.1591
  42. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Delivery Rev., 1997, vol. 23, nos. 1–3, p. 4. https://doi.org/10.1016/S0169-409X(96)00423-1
  43. Lipinski, C.A., Drug Discov. Today: Technologies, 2004, vol. 1, no. 4, p. 337. https://doi.org/10.1016/j.ddtec.2004.11.007
  44. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Delivery Rev., 2012, vol. 64. Suppl, p. 4. https://doi.org/10.1016/j.addr.2012.09.019
  45. Sander, T., OSIRIS Property Explorer. Idorsia, Pharmaceuticals Ltd, Switzerland. http://www.organic-chemistry.org/prog/peo/
  46. Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P.W., and Tang, Y., J. Chem. Inf. Model., 2012, vol. 52, no. 11, p. 3099. https://doi.org/10.1021/ci300367a
  47. Yang, J., Kwon, S., Bae, S.H., Park, K.M., Yoon, C., Lee, J.H., and Seok, C., J. Chem. Inf. Model., 2020, vol. 60, no. 6, p. 3246. https://doi.org/10.1021/acs.jcim.0c00104
  48. GalaxyWEB. A web server for protein structure prediction, refinement, and related methods. Computational Biology Lab, Department of Chemistry, Seoul National University, S. Korea. http://galaxy.seoklab.org/index.html
  49. Ko, J., Park, H., Heo, L., and Seok, C., Nucleic Acids Res., 2012, vol. 40, no. W1, p. W294. https://doi.org/10.1093/nar/gks493
  50. Mittelbach, M., Monatsh. Chem., 1985, vol. 116, no. 5, p. 689. https://doi.org/10.1007/bf00798796
  51. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726
  52. Sheldrick, G.M., Acta Crystallogr. (A), 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930
  53. Sheldrick, G.M., Acta Crystallogr. (C), 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218