Статья
2017

Composite electrode materials for solid oxide fuel cells with the protonic electrolyte of La1 – x Sr x ScO3 – δ


A. V. Kuz’min A. V. Kuz’min , M. S. Plekhanov M. S. Plekhanov , A. Yu. Stroeva A. Yu. Stroeva
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517070072
Abstract / Full Text

Heterogeneous systems based on the proton–conducting oxide of La0.95Sr0.05ScO3 – δ with Cu, Fe, Ni, Pd, La0.9Sr0.1MnO3 – δ considered as potential materials of solid oxide fuel cell (SOFC) electrodes are synthesized. Chemical interaction between individual components of composite materials is studied, dependences of thermal and chemical expansion of the electrolyte and composites are obtained, conductivity of electrodes is measured under the conditions of SOFC operation.

Author information
  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    A. V. Kuz’min, M. S. Plekhanov & A. Yu. Stroeva

  • Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, 620002, Russia

    A. V. Kuz’min & A. Yu. Stroeva

References
  1. Demin, A.K., Tsiakaras, P.E., Sobyanin, V.A., and Hramova, S.Y., Solid State Ionics, 2002, vol. 152, p. 555.
  2. Demin, A. and Tsiakaras, P., Int. J. Hydrogen Energy, 2001, vol. 26, p. 1103.
  3. Norby, T., J. Chem. Eng. Jpn., 2007, vol. 40, no. 13, p. 1166.
  4. Lybye, D. and Bonanos, N., Solid State Ionics, 1999, vol. 125, p. 339.
  5. Stroeva, A.Yu., Balakireva, V.B., Dunyushkina, L.A., and Gorelov, V.P., Russ. J. Electrochem., 2010, vol. 46, no. 5, p. 552.
  6. Stroeva, A.Yu., Gorelov, V.P., and Balakireva, V.B., Russ. J. Electrochem., 2010, vol. 46, no. 7, p. 784.
  7. Stroeva, A.Yu., Gorelov, V.P., Kuzmin, A.V., Vykhodets, V.B., and Kurennykh, T.E., Russ. J. Electrochem., 2011, vol. 47, no. 3, p. 264.
  8. Stroeva, A.Yu., Gorelov, V.P., Kuzmin, A.V., Antonova, E.P., and Plaksin, S.V., Russ. J. Electrochem., 2012, vol. 48, no. 5, p. 509.
  9. Stroeva, A.Yu. and Gorelov, V.P., Russ. J. Electrochem., 2012, vol. 48, no. 11, p. 1079.
  10. Stroeva, A.Yu., Gorelov, V.P., and Antonov, B.D., Russ. J. Electrochem., 2012, vol. 48, no. 12, p. 1171.
  11. Gorelov, V.P. and Stroeva, A.Yu., Russ. J. Electrochem., 2012, vol. 48, no. 10, p. 949.
  12. Murygin, I.V., Elektrodnye protsessy v tverdykh elektrolitakh (Electrode Processes in Solid Electrolytes), Moscow Nauka, 1991.
  13. Uchida, H., Tanaka, S., and Iwahara, H., J. Appl. Electrochem., 1985, vol. 15, p. 93.
  14. Hibino, T., Hashimoto, A., Suzuki, M., and Sano, M., J. Electrochem. Soc., 2002, vol. 149, p. A1503.
  15. Fabbri, E., D’Epifanio, A., Bartolomeo, E.Di., Licoccia, S., and Traversa, E., Solid State Ionics, 2008, vol. 179, p. 558.
  16. Ito, N., Iijima, M., Kimura, K., and Iguchi, S., J. Power Sources, 2005, vol. 152, p. 200.
  17. Yamaguchi, S., Shishido, T., Yugami, H., Yamamoto, S., and Hara, S., Solid State Ionics, 2003, vol. 162, p. 291.
  18. Essoumhi, A., Taillades, G., Taillades-Jacquin, M., Jones, D.J., and Roziere, J., Solid State Ionics, 2008, vol. 179, p. 2155.
  19. Chevallier, L., Zunic, M., Esposito, V., Bartolomeo, E.Di., and Traversa, E., Solid State Ionics, 2009, vol. 180, p. 715.
  20. Mather, G.C., Figueiredo, F.M., Fagg, D.P., Norby, T., Jurado, J.R., and Frade, J.R., Solid State Ionics, 2003, vol. 158, p. 333.
  21. Medvedev, D., Lyagaeva, J., Vdovin, G., Beresnev, S., Demin, A., and Tsiakaras, P., Electrochim. Acta, 2016, vol. 210, p. 681.
  22. Iguchia, F., Yamanea, T., Katob, H., and Yugamia, H., Solid State Ionics, 2015, vol. 275, p. 117.
  23. Backhaus-Ricoult, M., Adib, K., St. Clair, T., Luerssen, B., Gregoratti, L., and Barinov, A., Solid State Ionics, 2008, vol. 179, p. 891.
  24. Klemens, T., Chatzichristodoulou, C., Nielsen, J., Bozza, F., Thyden, K., Kiebach, R., and Ramousse, S., Solid State Ionics, 2012, vol. 224, p. 21.
  25. Stroeva, A.Yu., Gorelov, V.P., Kuz’min, A.V., Ponomareva, V.G., and Petrov, S.A., Phys. Solid State, 2015, vol. 57, no. 7, p. 1334.