The Effect of a Dense Layer with Mixed Ionic–Electronic Conduction on the Characteristics of an SOFC Cathode

A. V. Nikonov A. V. Nikonov , I. V. Semenova I. V. Semenova , N. B. Pavzderin N. B. Pavzderin , V. R. Khrustov V. R. Khrustov , L. V. Ermakova L. V. Ermakova
Российский электрохимический журнал
Abstract / Full Text

The effects of dense layers of La1 – xSrxCo1 – yFeyO3 – δ (x = 0.1, 0.2, 0.3, 0.4; y = 0, 0.2, 0.8) cathode materials located on the electrolyte surface on the polarization characteristics of porous cathodes has been studied. The electrode characteristics were measured by impedance spectroscopy on symmetric samples with three types of electrodes: a porous electrode, a dense electrode, and a double layer electrode consisting of dense and porous layers. It has been shown that the introduction of the dense layer into the cathode structure can have both a positive and a negative effect on the polarization resistance. It has been found that the effect of the dense layer on the high-frequency contribution to the polarization resistance correlates with the surface specific resistance of the dense layer. The layers from La1 – xSrxCoO3 (x = 0.1, 0.3) highly conductive materials lead to a decrease of polarization resistance while the layers from La1 – xSrxCo1 – yFeyO3 – δ (x = 0.2, 0.4; y = 0.2, 0.8) materials lead to an increase of polarization resistance.

Author information
  • Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620216, Yekaterinburg, Russia

    A. V. Nikonov, I. V. Semenova, N. B. Pavzderin & V. R. Khrustov

  • Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences, 620990, Yekaterinburg, Russia

    L. V. Ermakova

  1. High-Temperature Solid Oxide Fuel Cells for the 21st Century, Kendall, K. and Kendall, M., Eds., Amsterdam: Elsevier, 2015.
  2. Mahato, N., Banerjee, A., Gupta, A., Omar, S., and Balani, K., Progress in material selection for solid oxide fuel cell technology: a review, Prog. Mater. Sci., 2015, vol. 72, p. 141.
  3. Sreedhar, I., Agarwal, B., Goyal, P., and Singh, S.A., Recent advances in material and performance aspects of solid oxide fuel cells, J. Electroanal. Chem., 2019, vol. 848, p. 113315.
  4. Shin, J.W., Go, D., Kye, S.H., Lee, S., and An, J., Review on process-microstructure-performance relationship in ALD-engineered SOFCs, J. Phys.: Energy, 2019, vol. 1, p. 042002.
  5. Pikalova, E.Yu. and Kalinina E.G., Solid oxide fuel cells based on ceramic membranes with mixed conductivity: improving efficiency, Russ. Chem. Rev., 2021, vol. 90, p. 703.
  6. Hildenbrand, N., Boukamp, B.A., Nammensma, P., and Blank, D.H.A., Improved cathode/electrolyte interface of SOFC, Solid State Ionics, 2011, vol. 192, p. 12.
  7. Dumaisnil, K., Fasquelle, D., Mascot, M., Rolle, A., Roussel, P., Daviero-Minaud, S., Duponchel, B., Vannier, R.-N., and Carru, J.-C., Synthesis and characterization of La0.6Sr0.4Co0.8Fe0.2O3 films for solid oxide fuel cell cathodes, Thin Solid Films, 2014, vol. 553, p. 89.
  8. Chrzan, A., Karczewski, J., Gazda, M., Szymczewska, D., and Jasinski, P., Investigation of thin perovskite layers between cathode and doped ceria used as buffer layer in solid oxide fuel cells, J. Solid State Electrochem., 2015, vol. 19, p. 1807.
  9. Dumaisnil, K., Carru, J.-C., Fasquelle, D., Mascot, M., Rolle, A., and Vannier, R.-N., Promising performances for a La0.6Sr0.4Co0.8Fe0.2O3 – δ cathode with a dense interfacial layer at the electrode-electrolyte interface, Ionics, 2017, vol. 23, p. 2125.
  10. Pavzderin, N.B., Solovyev, A.A., Nikonov, A.V., Shipilova, A.V., Rabotkin, S.V., Semenov, V.A., Grenaderov, A.S., and Oskomov, K.V., Formation of a dense La(Sr)Fe(Ga)O3 interlayer at the electrolyte/porous cathode interface by magnetron sputtering and its effect on the cathode characteristics, Russ. J. Electrochem., 2021, vol. 57, p. 519.
  11. De Vero, J.C., Develos-Bagarinao, K., Kishimoto, H., Ishiyama, T., Yamaji, K., Horita, T., and Yokokawa, H., Enhanced stability of solid oxide fuel cells by employing a modified cathode-interlayer interface with a dense La0.6Sr0.4Co0.2Fe0.8O3 – δ thin film, J. Power Sources, 2018, vol. 377, p. 128.
  12. Khan, M.Z., Song, R.-H., Mehran, M.T., and Lee, S., Controlling cation migration and inter-diffusion across cathode/interlayer/electrolyte interfaces of solid oxide fuel cells: a review, Ceram. Int., 2021, vol. 47, p. 5839.
  13. Sakai, N., Kishimoto, H., Yamaji, K., Horita, T., Brito, M.E., and Yokokawa, H., Degradation behavior at interface of LSCF cathodes and rare earth doped ceria, ECS Trans., 2007, vol. 7, p. 389.
  14. Tu, H.Y., Takeda, Y., Imanishi, N., and Yamamoto, O., Ln0.4Sr0.6Co0.8Fe0.2O3 – δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells, Solid State Ionics, 1999, vol. 117, p. 277.
  15. Mineshige, A., Inaba, M., Yao, T., and Ogumi, Z., Crystal structure and metal-insulator transition of La1 – xSrxCoO3, J. Solid State Chem., 1996, vol. 121, p. 423.
  16. Abakumov, A.M., Rozova, M.G., and Antipov, E.V., Complex manganese oxides with the brownmillerite structure: synthesis, crystal chemistry and properties, Russ. Chem. Rev., 2004, vol. 73, p. 847.
  17. Taskin, A.A., Lavrov, A.N., and Ando, Y., Achieving fast oxygen diffusion in perovskites by cation ordering, Appl. Phys. Lett., 2005, vol. 86, p. 91910 (1–3).
  18. Parfitt, D., Chroneos, A., Kilner, J.A., and Grimes, R.W., Molecular dynamics study of oxygen diffusion in Pr2NiO4 + δ, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 6834.
  19. dos Santos-Gomez, L., Porras-Vazquez, J.M., Losilla, E.R., Martin, F., Ramos-Barrado, J.R., and Marrero-Lopez, D., LSCF–CGO nanocomposite cathodes deposited in a single step by spraypyrolysis, J. Eur. Ceram. Soc., 2018, vol. 38, p. 647.
  20. Krumpelt, M., Ralph, J., Cruse, T., and Bae, J.-M., Materials for low-temperature solid oxide fuel cells, Proc. 5th European SOFC Forum, Luzern, 2002, p. 215.
  21. Ullmann, H., Trofimenko, N., Tietz, F., Stöver, D., and Ahmad-Khanlou A., Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes, Solid State Ionics, 2000, vol. 138, p. 79.
  22. Kharton, V.V., Naumovich, E.N., Vecher, A.A., and Nikolaev, A.V., Oxide ion conduction in solid solutions Ln1 – xSrxCoO3 – δ (Ln = La, Pr, Nd), J. Solid State Chem., 1995, vol. 120, p. 128.