The Effect of Thin Functional Electrode Layers on Characteristics of Intermediate Temperature Solid Oxide Fuel Cell

A. V. Shipilova A. V. Shipilova , A. A. Solov’ev A. A. Solov’ev , E. A. Smolyanskii E. A. Smolyanskii , S. V. Rabotkin S. V. Rabotkin , I. V. Ionov I. V. Ionov
Российский электрохимический журнал
Abstract / Full Text

The thin-film multilayer structure of the membrane-electrode assembly in a solid oxide fuel cell which involves a NiO/ZrO2:Y2O3 anode functional layer and a La0.6Sr0.4CoO3 cathode functional layer and also a bilayer ZrO2:Y2O3/Ce0.9Gd0.1O1.95 electrolyte is formed by magnetron sputtering onto a supporting NiO/ZrO2:Y2O3 anode. The effect of the functional electrode layers involved in the structure of a solid oxide fuel cell on its efficiency is studied. The volt–ampere characteristics of multilayer fuel cells are studied in the temperature range of 800–600°C. It is shown that the inclusion of a thin (600 nm thick) cathode functional layer into the structure of the membrane–electrode assembly enhances the fuel cell efficiency by reducing the polarization losses on electrodes. The maximum power density of the fuel cell with the cathode functional layer is 2290 and 500 mW/cm2 at 800 and 600°С, respectively. The simultaneous presence of anode and cathode functional layers is found to be unwelcome because gives rise to diffusion limitations on the anode.

Author information
  • Institute of High Current Electronics, Siberian Branch, Russian Academy of Science, 634055, Tomsk, Russia

    A. V. Shipilova, A. A. Solov’ev, S. V. Rabotkin & I. V. Ionov

  • Tomsk Polytechnic University, Tomsk, Russia

    A. A. Solov’ev & E. A. Smolyanskii

  1. Will, J., Mitterdorfer, A., Kleinlogel, C., Perednis, D., and Gauckler, L.J., Fabrication of thin electrolytes for second-generation solid oxide fuel cells, Solid State Ionics, 2000, vol. 131, p. 79.
  2. Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., and Prinz, F.B., High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation, J. Electrochem. Soc., 2007, vol. 154, no. 1, p. B20.
  3. Soloviev, A.A., Shipilova, A.V., Koval’chuk, A.N., Ionov, I.V., and Rabotkin, S.V., Comparison of characteristics of solid oxide fuel cells with YSZ and CGO film solid electrolytes formed using magnetron sputtering technique, Russ. J. Electrochem., 2016, vol. 52, p. 662.
  4. Qiu, L., Ichikawa, T., Hirano, A., Imanishi, N., and Takeda, Y., Ln1 – xSrxCo1 – yFeyO3 – δ (Ln = Pr, Nd, Gd; x = 0.2, 0.3) for the electrodes of solid oxide fuel cells, Solid State Ionics, 2003, vol. 158, Is. 1–2, p. 55.
  5. Samat, A.A., Somalu, M.R., Muchtar, A., Hassan, O.H., and Osman, N., LSC cathode prepared by polymeric complexation method for proton-conducting SOFC application, J. Sol-Gel Sci. Technol., 2016, vol. 78, Is. 2, p. 382.
  6. Zhao, F., Peng, R., and Xia, C., LSC-based electrode with high durability for IT-SOFCs, Fuel Cells Bulletin, 2008, vol. 2, p. 12.
  7. Koval’chuk, A.N., Kuz’min, A.V., Osinkin, D.A., Farlenkov, A.S., Solov’ev, A.A., Shipilova, A.V., Ionov, I.V., Bogdanovich, N.M., and Beresnev, S.M., Single SOFC with supporting Ni-YSZ anode, bilayer YSZ/GDC film electrolyte and La2NiO4 + δ cathode, Russ. J. Electrochem., 2018, vol. 54, p. 541.
  8. Sato, K., Iwata, C., Kannari, N., and Abe, H., Highly accelerated oxygen reduction reaction kinetics in colloidal-processing-derived nanostructured lanthanum strontium cobalt ferrite/gadolinium-doped ceria composite cathode for intermediate-temperature solid oxide fuel cells, J. Power Sources, 2019, vol. 414, p. 502.
  9. Dieterle, L., Bockstaller, P., Gerthsen, D., Hayd, J., Ivers-Tiffée, E., and Guntow, U., Microstructure of nanoscaled La0.6Sr0.4CoO3 – δ cathodes for intermediate-temperature solid oxide fuel cells, Adv. Energy Mater., 2011, vol. 1, p. 249.
  10. Yamaguchi, T., Sumi, H., Hamamoto, K., Suzuki, T., Fujishiro, Y., Carter, J.D., and Barnett, S.A., Effect of nanostructured anode functional layer thickness on the solid-oxide fuel cell performance in the intermediate temperature, Int. J. Hydrogen Energy, 2014, vol. 39, Is. 34, p. 19731.
  11. Chrzan, A., Karczewski, J., Szymczewska, D., and Jasinski, P., Nanocrystalline cathode functional layer for SOFC, Electrochim. Acta, 2017, vol. 225, p. 168.
  12. Chen, K., Chen, X., Lü, Z., Ai, N., Huang, X., and Su, W., Performance of an anode-supported SOFC with anode functional layers, Electrochim. Acta, 2008, vol. 53, Is. 27, p. 7825.
  13. Solovyev, A.A., Lebedynskiy, A.M., Shipilova, A.V., Ionov, I.V., Smolyanskiy, E.A., Lauk, A.L., and Remnev, G.E., Effect of magnetron sputtered anode functional layer on the anode-supported solid oxide fuel cell performance, Int. J. Hydrogen Energy, 2019, vol. 44, p. 30636.
  14. Choi, H.J., Bae, K., Grieshammer, S., Han, G.D., Park, S.W., Kim, J.W., Jang, D.Y., Koo, J., Son, J.-W., Martin, M., and Shim, J.H., Surface tuning of solid oxide fuel cell cathode by atomic layer deposition, Adv. Energy Mater., 2018, vol. 8, Is. 33, p. 1802506.
  15. Yoon, J., Cho, S., Kim, J.-H., Lee, J.H., Bi, Z., Serquis, A., Zhang, X., Manthiram, A., and Wang, H., Vertically aligned nanocomposite thin films as a cathode/electrolyte interface layer for thin-film solid oxide fuel cells, Adv. Funct. Mater., 2009, vol. 19, p. 3868.
  16. Shin, S.S., Kim, J.H., Li, G., Lee, S.Y., Son, J.-W., Kim, H., and Choi, M., A highly activated and integrated nanoscale interlayer of cathodes in low-temperature solid oxide fuel cells via precursor-solution electrospray method, Int. J. Hydrogen Energy, 2019, vol. 44, Is. 9, p. 4476.
  17. Smolyanskiy, E.A., Linnik, S.A., Ionov, I.V., Shipilova, A.V., Semenov, V.A., Lauk, A.L., and Solovyev, A.A., Magnetron sputtered LSC thin films for solid oxide fuel cell application, IOP Conf. Series: J. Physics, 2018, vol. 1115, no. 3, p. 032080. https://doi.org/10.1088/1742-6596/1115/3/032080
  18. Hildenbrand, N., Boukamp, B.A., Nammensma, P., and Blank, D.H.A., Improved cathode/electrolyte interface of SOFC, Solid State Ionics, 2011, vol. 192, p. 12.
  19. Noh, H.S., Hong, J., Kim, H., Yoon, K.J., Kim, B.-K., Lee, H.-W., Lee, J.-H., and Son, J.-W., Scale-up of thin-film deposition-based solid oxide fuel cell by sputtering, a commercially viable thin-film technology, J. Electrochem. Soc., 2016, vol. 163, Is. 7, p. F613.
  20. Sochugov, N.S., Soloviev, A.A., Shipilova, A.V., and Rotshtain, V.P., An ion-plasma technique for formation of anode-supported thin electrolyte films for IT-SOFC applications, Int. J. Hydrogen Energy, 2010, vol. 36, p. 5550.
  21. Chen, D., Bishop, S.R., and Tuller, H.L., Praseodymium–cerium oxide thin film cathodes: study of oxygen reduction reaction kinetics, J. Electroceram., 2012, vol. 28, p. 62.
  22. Okada, S., Miyoshi, S., and Yamaguchi, S., Rate determining step in ORR of PrOx-based film cathodes, ECS Trans., 2015, vol. 68, p. 987.
  23. Nikonov, A.V., Pavzderin, N.B., Shkerin, S.N., Gyrdasova, O.I., and Lipilin, A.S., Fabrication of multilayer ceramic structure for fuel cell based on La(Sr)Ga(Mg)O3–La(Sr)Fe(Ga)O3 cathode, Russ. J. Appl. Chem., 2017, vol. 90, p. 369.
  24. Singhal, S.C. and Kendall, K., High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, 2003, p. 230.
  25. Noh, H.S., Lee, H., Kim, B.K., Lee, H.W., Lee, J.H., and Son, J.W., Microstructural factors of electrodes affecting the performance of anode-supported thin film yttria-stabilized zirconia electrolyte (∼1 μm) solid oxide fuel cells, J. Power Sources, 2011, vol. 196, p. 7169.
  26. Tao, Y., Shao, J., Wang, W.G., and Wang, J., Optimization and evaluation of La0.6Sr0.4CoO3 – d cathode for intermediate temperature solid oxide fuel cells, Fuel Cells, 2009, vol. 09, no. 5, p. 679.
  27. Mai, A., Haanappel, V.A.C., Uhlenbruck, S., Tietz, F., and Stöver, D., Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells Part II. Influence of the CGO interlayer, Solid State Ionics, 2005, vol. 176, p. 1341.
  28. Fonseca, F.C., Uhlenbruck, S., Nedelec, R., and Buchkremer, H.P., Properties of bias-assisted sputtered gadolinia-doped ceria interlayers for solid oxide fuel cells, J. Power Sources, 2010, vol. 195, p. 1599.