Статья
2018

Electrical Conductivity, Thermal Expansion and Electrochemical Properties of Perovskites PrBaFe2–xNi x O5 + δ


A. I. Ivanov A. I. Ivanov , V. A. Kolotygin V. A. Kolotygin , E. V. Tsipis E. V. Tsipis , S. I. Bredikhin S. I. Bredikhin , V. V. Kharton V. V. Kharton
Российский электрохимический журнал
https://doi.org/10.1134/S102319351806006X
Abstract / Full Text

In order to evaluate applicability of mixed-conducting PrBaFe2–xNi x О5 + δ perovskites for cathodes of solid oxide fuel cells (SOFCs), their crystal structure, thermal and chemical expansion, electrical conductivity and electrochemical behavior were studied. The solubility limit of nickel in PrBaFe2O5 + δ corresponds to x = 0.8. At x > 0.2, the disordered cubic phase transformed into the tetragonal phase. The maximum level of conductivity (50–120 S/cm) at the operating temperatures of SOFC was found for the composition with the maximum nickel content, PrBaFe1.2Ni0.8О5 + δ. This material is also characterized by moderate thermal and chemical expansion relative to other ferrite-nickelates. The polarization resistance of a porous PrBaFe1.2Ni0.8О5 + δ cathode in a cell with a protective Ce0.6La0.4O2–δ layer and a solid electrolyte (La0.9Sr0.1)0.98Ga0.8Mg0.2O3–δ was ~0.9 Ohm cm2 at a temperature of 1073 K, atmospheric oxygen pressure, and current density of–120 mA cm–2.

Author information
  • Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    A. I. Ivanov, V. A. Kolotygin, E. V. Tsipis, S. I. Bredikhin & V. V. Kharton

  • Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, 3810-193, Aveiro, Portugal

    E. V. Tsipis

References
  1. Tarancon, A., Burriel, M., Santiso, J., Skinner, S.J., and Kilner, J.A., Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells, J. Mater. Chem., 2010, vol. 20, p. 3799.
  2. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review. III. Recent trends and selected methodological aspects, J. Solid State Electrochem., 2011, vol. 15, p. 1007.
  3. Kim, J.H., Cassidy, M., Irvine, J.T.S., and Bae, J., Electrochemical investigation of composite cathodes with SmBa0.5Sr0.5Co2O5 + δ cathodes for intermediate temperature-operating solid oxide fuel cell, Chem. Mater., 2010, vol. 22, p. 883.
  4. Zhang, K., Ge, L., Ran, R., Shao, Z., and Liu, S., Synthesis, characterization and evaluation of cationordered LnBaCo2O5 + δ as materials of oxygen permeation membranes and cathodes of SOFCs, Acta Mater., 2008, vol. 56, p. 4876.
  5. Tsvetkov, D.S., Ivanov, I.L., Malyshkin, D.A., and Zuev, A.Yu., Oxygen content, crystal structure and chemical expansion of the double perovskites PrBaCo2 †xFexO6 †δ, Dalton Trans., 2014, vol. 43, p. 11862.
  6. Istomin, S.Ya. and Antipov, E.V., Katodnye materialy na osnove perovskitopodobnykh oksidov perekhodnykh metallov dlya srednetemperaturnykh tverdooksidnykh toplivnykh elementov, Usp. Khim., 2013, vol. 82, p. 686.
  7. Maignan, A., Martin, C., Pelloquin, D., Nguyen, N., and Raveau, B., Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5 + δ, closely related to the “112” structure, J. Solid State Chem., 1999, vol. 142, p. 247.
  8. Taskin, A.A., Lavrov, A.N., and Ando, Y., Transport and magnetic properties of GdBaCo2O5 + x single crystals: A cobalt oxide with square-lattice CoO2 planes over a wide range of electron and hole doping, Phys. Rev. B, 2005, vol. 71, p. 134414.
  9. King, G. and Woodward, P.M., Cation ordering in perovskites, J. Mater. Chem., 2010, vol. 20, p. 5785.
  10. Tsvetkov, D.S., Ivanov, I.L., and Zuev, A.Yu., Crystal structure and oxygen content of the double perovskites GdBaCo2 †xFexO6 †δ, J. Solid State Chem., 2013, vol. 199, p. 154.
  11. Kim, G., Wang, S., Jacobson, A.J., Yuan, Z., Donner, W., Chen, C.L., Reimus, L., Brodersen, P., and Mims, C.A., Oxygen exchange kinetics of epitaxial PrBaCo2O5 + δ thin films, Appl. Phys. Lett., 2006, vol. 88, p. 024103.
  12. Enriquez, E., Xu, X., Bao, Sh., Harrell, Z., Chen, Ch., Choi, S., Jun, A., Kim, G., and Whangbo, M.-H., Catalytic dynamics and oxygen diffusion in doped PrBaCo2O5.5 + δ thin films, Appl. Mater. Interfaces, 2015, vol. 7, p. 24353.
  13. Fu, D., Jin, F., and He, T., A-site calcium-doped Pr1‒xCaxBaCo2O5 + δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells, J. Power Sources, 2016, vol. 313, p. 134.
  14. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., 1976, vol. A32, p. 751.
  15. Suntsov, A.Yu., Leonidov, I.A., Patrakeev, M.V., and Kozhevnikov, V.L., Defect equilibrium in PrBaCo2O5 + δ at elevated temperatures, J. Solid State Chem., 2013, vol. 206, p. 99.
  16. Zuev, A.Yu., Petrov, A.N., Vylkov, A.I., and Tsvetkov, D.S., Oxygen nonstoichiometry and defect structure of undoped and doped lanthanum cobaltites, J. Mater Sci., 2007, vol. 42, p. 1901.
  17. Aksenova, T.V., Gavrilova, L.Ya., Yaremchenko, A.A., Cherepanov, V.A., and Kharton, V.V., Oxygen nonstoichiometry, thermal expansion and high-temperature electrical properties of layered NdBaCo2O5 + δ and SmBaCo2O5 + δ, Mater. Res. Bull., 2010, vol. 45, p. 1288.
  18. Volkova, N.E., Kolotygin, V.A., Gavrilova, L.Ya., Kharton, V.V., and Cherepanov, V.A., Nonstoichiometry, thermal expansion and oxygen permeability of SmBaCo2 − xCuxO6 − δ, Solid State Ionics, 2014, vol. 260, p. 15.
  19. Kim, J.H., Kim, Y., Connor, P.A., Irvine, J.T.S., Bae, J., and Zhou, W., Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5 + δ, a potential cathode material for intermediate-temperature solid oxide fuel cells, J. Power Sources, 2009, vol. 194, p. 704.
  20. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review II. Electrochemical behavior vs. materials science aspects, J. Solid State Electrochem., 2008, vol. 12, p. 1367.
  21. Spotorno, R., Piccardo, P., Costa, R., Han, F., and Schiller, G., LaNi0.6Fe0.4O3 as cathode contacting material: Effect on anode supported cell performances, ECS Trans., 2017, vol. 78, p. 1689.
  22. Ortiz-Vitoriano, N., Larramendi, I.R., Cook, S.N., Burriel, M., Aguadero, A., Kilner, J.A., and Rojo, T., The formation of performance enhancing pseudocomposites in the highly active La1 †xCaxFe0.8Ni0.2O3 system for IT-SOFC application, Adv. Funct. Mater., 2013, vol. 23, p. 5131.
  23. Yang, G., Su, Ch., Chen, Y., Tadé, M.O., and Shao, Z., Nano La0.6Ca0.4Fe0.8Ni0.2O3 †δ decorated porous doped ceria as a novel cobalt-free electrode for “symmetrical” solid oxide fuel cells, J. Mater. Chem. A., 2014, vol. 2, p. 19526.
  24. Chen, Y., Cheng, Zh., Yang, Y., Gu, Q., Tian, D., Lu, X., Yu, W., and Lin, B., Novel quasi-symmetric solid oxide fuel cells with enhanced electrochemical performance, J. Power Sources, 2016, vol. 310, p. 109.
  25. Trukhanov, S.V., Troyanchuk, I.O., Hervieu, M., Szymczak, H., and Barner, K., Magnetic and electrical properties of LBaMn2O6 †γ (L = Pr, Nd, Sm, Eu, Gd, Tb) manganites, Phys. Rev. B, 2002, vol. 66, p. 184424.
  26. Karppinen, M., Okamoto, H., Fjellvag, H., Motohashi, T., and Yamauchi, H., Oxygen and cation ordered perovskite, Ba2Y2Mn4O11, J. Solid State Chem., 2004, vol. 177, p. 2122.
  27. Chen, D., Wang, F., Shi, H., Ran, R., and Shao, Z., Systematic evaluation of Co-free LnBaFe2O5 + δ (Ln = Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells, Electrochim. Acta, 2012, vol. 78, p. 466.
  28. Kharton, V.V., Kovalevsky, A.V., Patrakeev, M.V., Tsipis, E.V., Viskup, A.P., Kolotygin, V.A., Yaremchenko, A.A., Shaula, A.L., Kiselev, E.A., and Waerenborgh, J.C., Oxygen nonstoichiometry, mixed conductivity, and Mössbauer spectra of Ln0.5A0.5FeO3 †δ (Ln = La–Sm, A = Sr, Ba): Effects of cation size, Chem. Mater., 2008, vol. 20, p. 6457.
  29. Patil, K.C., Hegde, M.S., Rattan, T., and Aruna, S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, New Jersey: World Scientific, 2008.
  30. Proskurnina, N.V., Voronina, V.I., Cherepanov, V.A., and Kiselev, E.A., Phase equilibria and crystal structure of the solid solution LaFe1 †xNixO3 †δ (0 ≤ x ≤ 1), Prog. Solid State Chem., 2007, vol. 35, p. 233.
  31. Tsipis, E.V., Kiselev, E.A., Kolotygin, V.A., Waerenborgh, J.C., Cherepanov, V.A., and Kharton, V.V., Mixed conductivity, Mössbauer spectra and thermal expansion of (La,Sr)(Fe,Ni)O3 − δ perovskites, Solid State Ionics, 2008, vol. 179, p. 2170.
  32. Hashimoto, S., Kammer, K., Larsen, P.H., Poulsen, F.W., and Mogensen, M., A study of Pr0.7Sr0.3Fe1 – xNixO3 †δ as a cathode material for SOFCs with intermediate operating temperature, Solid State Ionics, 2005, vol. 176, p. 1013.