Статья
2016

Scanning electrochemical microscopy: Visualization of local electrocatalytic activity of transition metals hexacyanoferrates


M. A. Komkova M. A. Komkova , A. Maljusch A. Maljusch , K. Sliozberg K. Sliozberg , W. Schuhmann W. Schuhmann , A. A. Karyakin A. A. Karyakin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516120065
Abstract / Full Text

The redox competition mode of scanning electrochemical microscopy (SECM) was used to visualize differences in local electrocatalytic activity of Fe and Ni hexacyanoferrates (HCFs) in hydrogen peroxide reduction. The uniform round-shaped spots of electrocatalysts for the SECM measurements were electrochemically deposited using a scanning droplet cell. A negligible activity of NiHCF towards H2O2 reduction compared to Prussian Blue (PB) was observed. The dependence of local Prussian Blue activity on the applied potential was investigated. The proposed strategy explores the potential application of SECM as a rapid screening tool for HCF film activity within a single experiment.

Author information
  • Materials Science and Chemistry Faculties of Lomonosov Moscow State University, Moscow, 119991, Russia

    M. A. Komkova & A. A. Karyakin

  • Ruhr-Universität Bochum, Analytical Chemistry–Center for Electrochemical Sciences (CES), Universitätsstr. 150, D-44780, Bochum, Germany

    A. Maljusch, K. Sliozberg & W. Schuhmann

References
  1. Brul, S. and Coote, P., Int. J. Food Microbiol., 1999, no. 50, p. 1.
  2. Blackburn, J.W., The Industrial Wastewater Systems Handbook. CRC Press, 1997, p. 544.
  3. Patten, D.A., Germain, M., Kelly, M.A., and Slack, R.S., J. Alzheimer’s Disease: JAD, 2010, vol. 20 (Suppl. 2), p. S357.
  4. Waris, G. and Ahsan, H., J. Carcinogenesis, 2006, no. 5, p. 14.
  5. Tsutsui, H., Kinugawa, S., and Matsushima, S., Am. J. Physiol.: Heart and Circulatory Physiol., 2011, vol. 301, p. H2181.
  6. Guilbault, G.G. and Lubrano, G.J., Analytica Chim. Acta, 1973, no. 64, p. 439.
  7. Karyakin, A.A., Electroanalysis, 2001, vol. 13, no. 10, p. 813.
  8. Karyakin, A.A. and Karyakina, E.E., Sensors and Actuators B: Chemical, 1999, no. 57, p. 268.
  9. Sitnikova, N.A., Komkova, M.A., Khomyakova, I.V., Karyakina, E.E., and Karyakin, A.A., Anal. Chem., 2014, no. 86, p. 4131.
  10. Sitnikova, N.A., Mokrushina, A.V., and Karyakin, A.A., Electrochim. Acta, 2014, no. 122, p. 173.
  11. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, 2001, p. 864.
  12. Lohrengel, M.M., Rosenkranz, C., Klüppel, I., Moehring, A., Bettermann, H., Bossche, B.V.d., and Deconinck, J., Electrochim. Acta, 2004, no. 49, p. 2863.
  13. Guadagnini, L., Maljusch, A., Chen, X., Neugebauer, S., Tonelli, D., and Schuhmann, W., Electrochim. Acta, 2009, no. 54, p. 3753.
  14. Bácskai, J., Martinusz, K., Czirók, E., Inzelt, G., Kulesza, P.J., and Malik, M.A., J. Electroanalyt. Chem., 1995, no. 385, p. 241.