Статья
2022

Design of a Solid-State Lithium Battery Based on LiFePO4 Cathode and Polymer Gel Electrolyte with Silicon Dioxide Nanoparticles


G. R. Baymuratova G. R. Baymuratova , K. G. Khatmullina K. G. Khatmullina , A. V. Yudina A. V. Yudina , O. V. Yarmolenko O. V. Yarmolenko
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522030041
Abstract / Full Text

Design of prototype for a solid-state lithium battery with LiFePO4 cathode and nanocomposite polymer gel electrolyte is developed. The concept of an asymmetric solid-state electrolyte was used for better compatibility of the solid electrolyte/electrode interface. According to the concept, a silica-nanoparticle-based transition layer is used facing the lithium anode; a liquid electrolyte layer; facing the cathode. The composition of the liquid electrolyte is optimized. 1 M lithium bis-trifluoromethanesulfonyl imide solution in a dioxolane/dimethoxyethane mixture (2 : 1) is shown to be the best electrolyte for the forming of a transition ion-conducting layer between the nanocomposite polymer gel electrolyte and the LiFePO4 cathode; 1 M LiBF4 in gamma-butyrolactonee, for the synthesis of a cross-linked polymer gel electrolyte, as an inert liquid medium for the radical-polymerization reaction. Comparative tests of Li/LiFePO4 battery prototypes showed the maximal capacity of the LiFePO4 cathode to be as large as 170 mA h g–1 when using a nanocomposite polymer gel electrolyte based on polyethylene glycol diacrylate with 6 wt % SiO2 with asymmetric interface.

Author information
  • Insitute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    G. R. Baymuratova, K. G. Khatmullina, A. V. Yudina & O. V. Yarmolenko

  • National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia

    K. G. Khatmullina

References
  1. Suthanthiraraj, S.A. and Johnsi, M., Nanocomposite polymer electrolytes, Ionics, 2017, vol. 23, no. 10, p. 2531.
  2. Keller, M., Varzi, A., and Passerini, S., Hybrid electrolytes for lithium metal batteries, J. Power Sources, 2018, vol. 392, p. 206.
  3. Yarmolenko, O.V., Yudina, A.V., and Khatmullina, K.G., Nanocomposite polymer electrolytes for lithium power sources (review), Russ. J. Electrochem., 2018, vol. 54, p. 325.
  4. Capiglia, C., Mustarelli, P., Quartarone, E., Tomasi, C., and Magistris, A., Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes, Solid State Ionics, 1999, vol. 118, p. 73.
  5. Mustarelli, P., Capiglia, C., Quartarone, E., Tomasi, C., Ferloni, P., and Linati, L., Cation dynamics and relaxation in nanoscale polymer electrolytes: a 7Li NMR study, Phys. Rev. B, 1999, vol. 60, p. 7228.
  6. Croce, F., Persi, L., Scrosati, B., Serraino-Fiory, F., Plichta, E., and Hendrickson, M.A., Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes, Electrochim. Acta, 2001, vol. 46, p. 2457.
  7. Jayathilaka, P.A.R.D., Dissanayake, M.A.K.L., Albinsson, I., and Mellander, B.E., Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9lithium bis-trifluoromethanesulfonyl imide polymer electrolyte system, Electrochim. Acta, 2002, vol. 47, p. 3257.
  8. Chung, S.H., Wang, Y., Greenbaum, S.G., Marcinek, M., Persi, L., Croce, F., Wieczorek, W., and Scrosati, B., Nuclear magnetic resonance studies of nanocomposite polymer electrolytes, J. Phys.: Condens. Matter, 2001, vol. 13, p. 11763.
  9. Baymuratova, G.R., Chernyak, A.V., Slesarenko, A.A., Tulibaeva, G.Z., Volkov, V.I., and Yarmolenko, O.V., Specific Features of Ion Transport in New Nanocomposite Gel Electrolytes Based on Cross-Linked Polymers and Silica Nanoparicles, Russ. J. Electrochem., 2019, vol. 55, p. 529.
  10. Croce, F., Appetecchi, G.B., Persi, L., and Scrosati, B., Nanocomposite polymer electrolytes for lithium batteries, Nature, 1998, vol. 394, p. 456.
  11. Kim, Y.W., Lee, W., and Choi, B.K., Relation between glass transition and melting of PEO salt complexes, Electrochim. Acta, 2000, vol. 45, p. 1473.
  12. Best, A.S., Adebahr, J., Jacobsson, P., MacFarlane, D.R., and Forsyth, M., Microscopic interactions in nanocomposite electrolytes, Macromolecules, 2001, vol. 34, p. 4549.
  13. Tambelli, C.C., Bloise, A.C., Rosário, A.V., Pereira, E.C., Magon C.J., and Donoso, J.P., Characterisation of PEO–Al2O3 composite polymer electrolyte, Electrochim. Acta, 2002, vol. 47, p. 1677.
  14. Indris, S., Heitjans, P., Ulrich, M., and Bunde, A., AC and DC conductivity in nano- and microcrystalline Li2O:B2O3 composites: experimental results and theoretical models, Z. Phys. Chem., 2005, Bd 219, S. 89.
  15. Nimah, Y.L., Ming-Yao Cheng, M.Y., Cheng, J.H., Rick, J., and Hwang, B.-H., Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries, J. Power Sources, 2015, vol. 278, p. 375.
  16. Zhou, R., Liu, W., Yao, X., Leong, Y.W., and Lu, X., Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO2 nanoparticles as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 16040.
  17. Boor, S., Rajiv, K., and Sekhon, S.S., Conductivity and Viscosity behavior of PMMA based gels and nano dispersed gels: Role of dielectric constant of solvent, Solid State Ionics, 2005, vol. 176, p. 1577.
  18. Kumar, D., Suleman, M., and Hashmi, S.A., Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposites for sodium–sulfur batteries, Solid State Ionics, 2011, vol. 202, p. 43.
  19. Kumar, D. and Hashmi, S.A., Ion transport and ion-filler-polymer interaction in poly(methylmethacrylate)-based, sodium ion conducting, gel polymer electrolyte dispersed with silica nano-particles, J. Power Sources, 2010, vol. 195, p. 5101.
  20. Ramesh, S. and Wen, L.C., Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nano-composite PMMA–LiCF3SO3–SiO2, Ionics, 2010, vol. 16, p. 255.
  21. Yarmolenko, O.V., Khatmullina, K.G., Baimuratova, G.R., Tulibaeva, G.Z., and Bogdanova, L.M., On the nature of the Double Maximum Conductivity of Nanocomposite Polymer Electrolytes for Lithium Power Sources, Mend. Comm., 2018, vol. 28, no. 1, p. 41.
  22. Yudina, A.V., Baymuratova, G.R., Tulibaeva, G.Z., Litvinov, A.L., Shestakov, A.F., and Yarmolenko, O.V., Conductivity increase effect in nanocomposite polymer gel electrolytes: manifestation in the IR spectra, Russ. Chem. Bulletin, Int. Ed., 2020, vol. 69, no. 8, p. 1455.
  23. Lee, Y.-S., Shin, W.-K., Kim, J.S., and Kim, D.-W., High performance composite polymer electrolytes for lithium-ion polymer cells composed of a graphite negative electrode and LiFePO4 positive electrode, RSC Adv., 2015, vol. 5, p. 18359.
  24. Yarmolenko, O.V., Khatmullina, K.G., Bogdanova, L.M., Shuvalova, N.I., Dzhavadyan, E.A., Marinin, A.A., and Volkov, V.I., Effect of TiO2 nanoparticle additions on the conductivity of network polymer electrolytes for lithium power sources, Russ. J. Electrochem., 2014, vol. 50, p. 336.
  25. Borodin, O., Smith, G.D., Bandyopadhyaya, R., Redfern, P., and Curtiss, L.A., Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4, Modelling Simul. Mater. Sci. Eng., 2004, vol. 12, p. S73.
  26. Zhao, C.-Z., Zhao, B.-C., Yan, C., Zhang, X.-Q., Huang, J.-Q., Mo, Y., Xu, X., Li, H., and Zhang, Q., Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: A review, Energy Storage Materials, 2020, vol. 24, p. 75.
  27. Zhang, X.-Q., Zhao, C.-Z., Huang, J.-Q., and Zhang, Q., Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries, Engineering, 2018, vol. 4, no. 6, p. 831.
  28. Fan, L., Wei, S., Li, S., Li, Q., and Lu, Y., Recent progress of the solid-state electrolytes for high-energy metal-based batteries, Adv. Energy Mater., 2018, vol. 8, no. 11, A. 1702657.
  29. Yang, C., Fu, K., Zhang, Y., Hitz, E., and Hu, L., Protected lithium-metal anodes in batteries: from liquid to solid, Adv. Mater., 2017, vol. 29, no. 36, A. 1701169.
  30. Sun, C., Liu, J., Gong, Y., Wilkinson, D.P., and Zhang, J., Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 2017, vol. 33, p. 363.
  31. Cheng, X.-B., Zhang, R., Zhao, C.-Z., and Zhang, Q., Toward safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 2017, vol. 117, no. 15, p.10403.
  32. Han, F., Westover, A.S., Yue, J., Fan, X., Wang, F., Chi, M., Leonard, D.N., Dudney, N.J., Wang, H., and Wang, C., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy, 2019, vol. 4, no. 3, p. 187.
  33. Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y.-M., and Chen, Z., Review-practical challenges hindering the development of solid state Li ion batteries, J. Electrochem. Soc., 2017, vol. 164, no. 7, p. A1731.
  34. Wang, L., Zhou, Z., Yan, X., Hou, F., Wen, L., Luo, W., Liang, J., and Dou, S.X., Engineering of lithium-metal anodes towards a safe and stable battery, Energy Storage Mater., 2018, vol. 14, p. 22.
  35. Li, N.-W., Yin, Y.-X., Yang, C.-P., and Guo, Y.-G., An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes, Adv. Mater., 2016, vol. 28, no. 9, p. 1853.
  36. Wu, J.-Y., Ling, S.-G., Yang, Q., Li, H., Xu, X.-X., and Chen, L.-Q., Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3–polypropylene (PP) based separator for Li-ion batteries, Chin. Phys. B, 2016, vol. 25, p. 078204.
  37. Gao, H., Xue, L., Xin, S., Park, K., and Goodenough, J.B., A plastic-crystal electrolyte interphase for all-solid-state sodium batteries, Angew. Chem. Int. Ed., 2017, vol. 56, no. 20, p. 5541.
  38. Zhang, Z., Zhang, Q., Shi, J., Chu, Y.S., Yu, X., Xu, K., Ge, M., Yan, H., Li, W., Gu, L., Hu, Y.- S., Li, H., Yang, X.-Q., Chen, L., and Huang, X., A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life, Adv. Energy Mater., 2017, vol. 7, no. 4, p. 1601196.
  39. Li, J., Lin, Y., Yao, H., Yuan, C., and Liu, J., Tuning Thin-Film Electrolyte for Lithium Battery by Grafting Cyclic Carbonate and Combed Poly(ethylene oxide) on Polysiloxane, Chemsuschem, 2014, vol. 7, no. 7, p. 1901.
  40. Cui, Y., Liang, X., Chai, J., Cui, Z., Wang, Q., He, W., Liu, X., Liu, Z., and Cui, G., High performance solid polymer electrolytes for rechargeable batteries: a self-catalyzed strategy toward facile synthesis, J. Feng, Adv. Sci., 2017, vol. 4, no. 11, A. 1700174.
  41. Yan, C., Cheng, X.-B., Tian, Y., Chen, X., Zhang, X.-Q., Li, W.-J., Huang, J.-Q., and Zhang, Q., Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition, Adv. Mater., 2018, vol. 30, no. 25, p. 1707629.
  42. Nolan, A.M., Zhu, Y., He, X., Bai, Q., and Mo, Y., Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries, Joule, 2018, vol. 2, no. 10, p. 2016.
  43. Shi, S., Lu, P., Liu, Z., Qi, Y., Hector, L.G., Li, H., and Harris, S.J., Direct calculation of Li-ion transport in the solid electrolyte interphase, J. Amer. Chem. Soc., 2012, vol. 134, no. 37, p. 15476.
  44. Lee, Y.-S., Lee, J.H., Choi, J.-A., Yoon, W.Y., and Kim, D.-W., Cycling characteristics of lithium powder polymer batteries assembled with composite gel polymer electrolytes and lithium powder anode, Adv. Funct. Mater., 2013, vol. 23, no. 8, p. 1019.
  45. Gao, Y., Yan, Z., Gray, J.L., He, X., Wang, D., Chen, T., Huang, Q., Li, Y.C., Wang, H., Kim, S.H., Mallouk, T.E., and Wang, D., Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions, Nat. Mater., 2019, vol. 18, no. 4, p. 384.
  46. Zhou, D., Liu, R., He, Y.-B., Li, F., Liu, M., Li, B., Yang, Q.-H., Cai, Q., and Kang, F., SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life, Adv. Energy Mater., 2016, vol. 6, no. 7, p. 1502214.
  47. Baymuratova, G.R., Slesarenko, A.A., Yudina, A.V., and Yarmolenko, O.V., Conducting properties of nanocomposite polymer electrolytes based on polyethylene glycol diacrylate and SiO2 nanoparticles at the interface with a lithium electrode, Russ. Chem. Bull., Int. Ed., 2018, vol. 67, no. 9, p. 1648.
  48. Richards, W.D., Miara, L.J., Wang, Y., Kim, J.C., and Ceder, G., Interface stability in solid-state batteries, Chem. Mater., 2016, vol. 28, no. 1, p. 266.
  49. Zhu, Y., He, X., and Mo, Y., First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries, J. Mater. Chem. A, 2016, vol. 4, no. 9, p. 3253.
  50. Cabana, J., Kwon, B.J., and Hu, L., Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Li-ion batteries, Accounts Chem. Res., 2018, vol. 51, no. 2, p. 299.
  51. Aurbach, D., Markovsky, B., Salitra, G., Markevich, E., Talyossef, Y., Koltypin, M., Nazar, L., Ellis, B., and Kovacheva, D., Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries, J. Power Sources, 2007, vol. 165, no. 2, p. 491.
  52. Okumura, T., Fukutsuka, T., Matsumoto, K., Orikasa, Y., Arai, H., Ogumi, Z., and Uchimoto, Y., Lithium-Ion Transfer Reaction at the Interface between Partially Fluorinated Insertion Electrodes and Electrolyte Solutions, J. Phys. Chem. Lett. C, 2011, vol. 115, p. 12990.
  53. Zhao, Q., Liu, X., Stalin, S., Khan, K., and Archer, L.A., Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries, Nat. Energy, 2019, vol. 4, no. 5, p. 365.
  54. Wang, C., Sun, Liu, Q., Y., Zhao, Y., Li, X., Lin, X., Banis, M.N., Li, M., Li, W., Adair, K.R., Wang, D., Liang, J., Li, R., Zhang, L., Yang, R., Lu, S., and Sun, X., Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes, Nano Energy, 2018, vol. 48, p. 35.
  55. Gao, Y., Wang, D., Li, Y.C., Yu, Z., Mallouk, T.E., and Wang, D., Salt-based organic-inorganic nanocomposites: towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface, Angew. Chem. Int. Ed., 2018, vol. 57, no. 41, p. 13608.
  56. Abe, T., Sagane, F., Ohtsuka, M., Iriyama, Y., and Ogumi, J. Z., Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte – a key to enhancing the rate capability of lithium-ion batteries, J. Electrochem. Soc., 2005, vol. 152, no. 11, p. A2151.
  57. Busche, M.R., Drossel, T., Leichtweiss, T., Weber, D.A., Falk, M., Schneider, M., Reich, M.- L., Sommer, H., Adelhelm, P., and Janek, J., Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid battery concepts, Nat. Chem., 2016, vol. 8, no. 5, p. 426.
  58. Duan, H., Yin, Y.-X., Shi, Y., Wang, P.-F., Zhang, X.-D., Yang, C.-P., Shi, J.-L., Wen, R., Guo, Y.-G., and Wan, L.-J., Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers, J. Amer. Chem. Soc., 2018, vol. 140, p. 82.
  59. Dong, W., Zeng, X.-X., Zhang, X.-D., Li, J.-Y., Shi, J.-L., Xiao, Y., Shi, Y., Wen, R., Yin, Y.-X., Wang, T.-S., Wang, C.-R., and Guo, Y.-G., Gradiently polymerized solid electrolyte meets with micro-/nanostructured cathode array, ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 21, p. 18005.
  60. Li, X., Qian, K., He, Y.-B., Liu, C., An, D., Li, Y., Zhou, D., Lin, Z., Li, B., Yang, Q.-H., and Kang, F., A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances, J. Mater. Chem. A, 2017, vol. 5, no. 35, p. 18888.
  61. Yudina, A.V., Berezin, M.P., Baymuratova, G.R., Shuvalova, N.I., and Yarmolenko, O.V., Specific features of the synthesis and the physicochemical properties of nanocomposite polymer electrolytes based on poly(ethylene glycol) diacrylate with the introduction of SiO2, Russ. Chem. Bull., Int. Ed., 2017, vol. 66, no. 7, p. 1278.
  62. Chernyak, A.V., Berezin, M.P., Slesarenko, N.A., Zabrodin, V.A., Volkov, V.I., Yudina, A.V., Shuvalova, N.I., and Yarmolenko, O.V., Influence of the reticular polymeric gel-electrolyte structure on ionic and molecular mobility of an electrolyte system saltionic liquid: LiBF4-1-ethyl-3-methylimidazolium tetrafluoroborate, Russ. Chem. Bull., Int. Ed., 2016, vol. 65, p. 2053.
  63. Sivonxay, E., Aykol, M., and Persson, K.A., The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles, Electrochim. Acta, 2020, vol. 331, p. 13534.
  64. Jung, S.C., Kim, H.-J., Kim, J.-H., and Han Y.-K., Atomic-Level Understanding toward a High-Capacity and High Power Silicon Oxide (SiO) Materia, J. Phys. Chem., 2016, vol. 120, p. 886.
  65. Zhang, Y., Li, Y., Wang, Z., and Zhao, K., Lithiation of SiO2 in Li-Ion Batteries: In Situ Transmission Electron Microscopy Experiments and Theoretical Studies, Nano Lett., 2014, vol. 14, p. 7161.