Статья
2017

Ionic mobility and electrophysical properties of solid solutions in PbF2–SbF3 and PbF2–SnF2–SbF3 systems


V. Ya. Kavun V. Ya. Kavun , N. F. Uvarov N. F. Uvarov , A. B. Slobodyuk A. B. Slobodyuk , A. S. Ulikhin A. S. Ulikhin , I. A. Telin I. A. Telin , V. K. Goncharuk V. K. Goncharuk
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517080092
Abstract / Full Text

Ionic mobility and electrical conductivity of solid solutions with fluorite structure, obtained with solid-state approach in PbF2–SbF3 and PbF2–SnF2–SbF3 systems, are studied by 19F NMR and electrochemical impedance spectroscopy methods. The 19F NMR spectra parameters, types of ion motions in the fluoride sublattice, and the ionic conductivity magnitude are shown to be determined by the temperature and fluoride concentration in the solid solutions. The solid solution specific conductivity in the PbF2–SbF3 and PbF2–SnF2–SbF3 systems at 420–450 K is as high as ~10–2 S/cm, which allows accounting the solid solutions as a base for preparation of functional materials.

Author information
  • Institute of Chemistry, Far East Branch, Russian Academy of Sciences, pr. Stoletiya Vladivostoka 159, Vladivostok, 690022, Russia

    V. Ya. Kavun, A. B. Slobodyuk, I. A. Telin & V. K. Goncharuk

  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Kutateladze 18, Novosibirsk, 630128, Russia

    N. F. Uvarov & A. S. Ulikhin

References
  1. Réau, J.-M. and Hagenmuller, P., Rev. Inorg. Chem., 1999, vol. 19, p. 45.
  2. Berastegui, P. and Hull, S., Solid State Ionics, 2002, vols. 154–155, p. 605.
  3. Trnovcová, V., Fedorov, P.P., and Furar, I. Russ. J. Electrochem., 2009, vol. 45, p. 640.
  4. Wahbi, M., Reau, J.-M., Senegas, J., and Hagenmuller, P., Solid State Ionics, 1993, vol. 59, p. 83.
  5. Castiglione, M.J. and Madden, P.A., J. Phys.: Condens. Matter., 2001, vol. 13, p. 9963.
  6. Trnovcova, V., Fedorov, P.P., Buchinskaya, I.I., Šmatko, V., and Hanic, F., Solid State Ionics, 1999, vol. 119, p. 181.
  7. Hull, S. and Berastegui, P., J. Phys.: Condens. Mater., 1999, vol. 11, p. 5257.
  8. Sorokin, N.I., Fedorov, P.P., and Sobolev, B.P., Inorg. Mater., 1997, vol. 33, p. 5.
  9. Kavun, V.Ya., Sloboduyk A.B., Sinebryukhov S.L., Tararako E.A., Goncharuk V.K., Gnedenkov S.V., and Sergienko V.I., Russ. J. Electrochem, 2007, vol. 43, p. 611.
  10. Kavun, V.Ya., Uvarov, N.F., Goncharuk, V.K., Merkulov, E.B., Ulikhin, A.S., Telin, I.A., and Kharchenko, V.I., Solid State Ionics, 2014, vol. 257, p. 17.
  11. Kavun, V.Ya., Uvarov, N.F., Ulihin, A.S., Slobodyuk, A.B., Merkulov, E.B., Yaroshenko, R.M., and Goncharuk, V.K., Solid State Ionics, 2012, vol. 225, p. 645.
  12. Réau, J.-M., Portier, J., Levasseur, A., Villeneuve, G., and Pouchard, M., Mater. Res. Bull., 1878, vol. 13, p. 1415.
  13. Lucat, C., Rhandour, A., Réau, J.-M., Portier, J., and Hagenmuller, P., J. Solid State Chem., 1979, vol. 29, p. 373.
  14. Buchinskaya I.I., Fedorov P.P., Russ. Chem. Rev., 2004, vol. 73, p. 371.
  15. Sorokin N.I., Inorg. Mater, 2004, vol. 40, p. 1128.
  16. Ito, Y., Mukoyama, T., Ashio, K., Yamamoto, K., Suga, Y., Yoshikado, S., Julien, C., and Tanaka, T., Solid State Ionics, 1998, vol. 106, p. 291.
  17. Yoshikado, S., Ito, Y., and Réau, J.-M., Solid State Ionics, 2002, vol. 154-155, p. 503.
  18. Ahmad, M.M., Yamane, Y., Yamada, K., and Tanaka, S., J. Phys. D: Appl. Phys., 2007, vol. 40, p. 6020.
  19. Kumar, M., Yamada, K., Okuda, T., and Sekhon, S.S., Phys. Stat. Sol. (b), 2003, vol. 239, p. 432.
  20. Uno, M., Onitsuka, M., Ito, Y., and Yoshikado, S., Solid State Ionics, 2005, vol. 176, p. 2493.
  21. Vilminot, S., Perez, G., Granier, W., and Cot, L., Solid State Ionics, 1981, vol. 2, p. 91.
  22. Denes, G., Milova, G., Madamba, M.C., and Perfiliev, M., Solid State Ionics, 1996, vol. 86-88, p. 77.
  23. Castiglione, M., Madden, P.A., Berastegui, P., and Hull, S., J. Phys.: Condens. Matter, 2005, vol. 17, p. 845.
  24. Ahmad, M.M., Defects Diffusion Forum, 2004, vol. 229, p. 1.
  25. Yamada, K., Ahmad, M.M., Ogiso, Y., Okuda, T., Chikami, J., Miehe, G., Ehrenberg, H., and Fuess, H., Eur. Phys. J., 2004, vol. 40, p. 167.
  26. Ahmad, M.M., Yamada, K., and Okuda, T., Phisica, vol. 339, p. 94.
  27. Vopilov V.A., Buznik V.M., Chernov S.V., and Murin I.V., Russ. J. Appl. Chem., 1982, vol. 55, p. 1800.
  28. Hull, S. and Berastegui, P., Phisica, 2006, vols. 385–386, p. 243.
  29. Murray, E., Brougham, D.F., Stankovic, J., and Abrahams, I., J. Phys. Chem., 2008, vol. 112, p. 5672.
  30. Ahmad, M.M., Yamada, K., and Okuda, T., J. Phys.: Condens. Matter, 2002, vol. 14, p. 7233.
  31. Sorokin N.I., Sobolev B.P., Breiter M., Physics Solid State, 2002, vol. 44, p. 1579.
  32. Kanno, R., Nakamura, S., Ohno, K., and Kawamoto, Y., Mater. Res. Bull., 1991, vol. 26, p. 1111.
  33. Darbon, P., Réau, J.-M., and Hagenmuller, P., Mater. Res. Bull., 1981, vol. 16, p. 273.
  34. Gabuda, S.P., Gagarinskii, Yu.V., and Polishchuk, S.A., YaMR v neorganicheskikh ftoridakh (NMR in Inorganic Fluorides), Moscow: Atomizdat, 1978.
  35. Lundin, A.G. and Fedin, E.I., YaMR-spektroskopiya (NMR-Spectroscopy), Moscow: Nauka, 1986.
  36. Lucat, C., Portier, J., Réau, J.-M., Hagenmuller, P., and Soubeyroux, J.L., J. Solid State Chem., 1980, vol. 32, p. 279.
  37. Kavun, V.Ya., Uvarov, N.F., Telin, I.A., Yaroshenko, R.M., Ulikhin, A.S., Podgorbunskii, A.B., and Goncharuk, V.K., Inorg. Mater, 2013, vol. 49, p. 1157.
  38. Kavun, V.Ya., Uvarov, N.F., Merkulov, E.B., Polyantsev, M.M., Ulihin, A.S., and Goncharuk, V.K., Sergienko V.I., Solid State Ionics, 2015, vol. 274, p. 4.
  39. El Omari Malika Hafidi, E., El Omari Mohamed Abaouz, A., Yacoubi, A., Réau, J.M., and Senegas, J., Mater. Lett., 2002, vol. 53, p. 138.
  40. Sorokin, N.I., Fedorov, P.P., Nikol’skaya, O.K., Nikeeva, O.A., Rakov, E.G., and Ardashnikova, E.I., Inorg. Mater, 2001, vol. 37, p. 1178.
  41. Hull, S., Rep. Prog. Phys., 2004, vol. 67, p. 1233.
  42. Floch, M.D-L., Pannetier, J., and Denes, G., Phys. Rev. B, 1986, vol. 33, p. 632.