Kinetics of Induced Deposition of Films Based on Tetrakis(4-Aminophenyl)Porphyrin

S. M. Kuz’min S. M. Kuz’min , S. A. Chulovskaya S. A. Chulovskaya , V. I. Parfenyuk V. I. Parfenyuk
Российский электрохимический журнал
Abstract / Full Text

This work confirms formation of surface films of 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (H2T(4-NH2Ph)P) in dimethylsulfoxide in the potential range of oxygen electroreduction. Kinetics of variation of faradaic currents and of the interface characteristics are studied at the working electrode potentials of +0.5 V (porphyrin electrooxidation), –0.9 V (oxygen electroreduction), and –1.25 V (coreduction of porphyrin and oxygen). It is shown that the working electrode surface is passivated at the potential of +0.5 V and faradaic currents decrease fast. At the potentials of –0.9 and –1.25 V, the working electrode surface passivation is less pronounced. As shown by analysis of electrode impedance spectra, a film is formed on the electrode surface under electroreduction conditions (–0.9 and –1.25 V), as opposed to electrooxidation conditions (+0.5 V). Charge transport through this film can be characterized by modeling the interface impedance. The kinetics of variation of the interface parameters allow estimating the stage mechanism of film formation and restructuring of the formed layer.

Author information
  • G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045, Ivanovo, Russia

    S. M. Kuz’min, S. A. Chulovskaya & V. I. Parfenyuk

  • Ivanovo State Power University, 153003, Ivanovo, Russia

    S. M. Kuz’min

  • Ivanovo State University of Chemistry and Technology, 153000, Ivanovo, Russia

    V. I. Parfenyuk

  1. Smith, K.M., Development of porphyrin syntheses, New J. Chem., 2016, vol. 40, p. 5644.
  2. Hiroto, S., Miyake, Y., and Shinokubo, H., Synthesis and Functionalization of Porphyrins through Organometallic Methodologies, Chem. Rev., 2017, vol. 117, p. 2910.
  3. Korolev, V.V., Lomova, T.N., Ramazanova, A.G., Korolev, D.V., and Mozhzhukhina, E.G., Phthalocyanine-based Molecular Paramagnets. Effect of double-decker structure on magnetothermal properties of gadolinium complexes, J. Organomet. Chem., 2016, vol. 819, p. 209.
  4. Wang, K., Qi, D., Li, Y., Wang, T., Li, H., and Jiang, J., Tetrapyrrole macrocycle based conjugated two-dimensional mesoporous polymers and covalent organic frameworks: From synthesis to material applications, Coord. Chem. Rev., 2019, vol. 378, p. 188.
  5. Lomova, T., Aksial’no koordinirovannye metalloporfiriny v nauke i praktike (Axially Coordinated Metal Porphyrins in Science and in Practice), Moscow: Krasand, 2018.
  6. Kou, J., Dou, D., and Yang, L., Porphyrin photosensitizers in photodynamic therapy and its applications, Oncotarget, 2017, vol. 8, p. 81591.
  7. Gomes, A.T.P.C., Neves, M.G.P.M.S., and Cavaleiro, J.A.S., Cancer, Photodynamic Therapy and Porphyrin-Type Derivatives, An. Acad. Bras. Ciênc., 2018, vol. 90, p. 993.
  8. Kuzmin, S.M., Chulovskaya, S.A., and Parfenyuk, V.I., Mechanism and superoxide scavenging activity of hydroxy substituted tetraphenylporphyrins via coulometric approach, J. Electroanal. Chem., 2016, vol. 772, p. 80.
  9. Kuzmin, S.M., Chulovskaya, S.A., and Parfenyuk, V.I., Substituent position influence on the electrochemical properties and antioxidant activity of tetra(aminophenyl)porphyrins, J. Porphyrins Phthalocyanines, 2014, vol. 18, p. 585.
  10. Kuzmin, S.M., Chulovskaya, S.A., and Parfenyuk, V.I., The coulometric approach to the superoxide scavenging activity determination: The case of porphyrin derivatives influence on oxygen electroreduction, J. Porphyrins Phthalocyanines, 2015, vol. 19, p. 1053.
  11. Kuzmin, S.M., Chulovskaya, S.A., and Parfenyuk, V.I., Hydroxyalkyloxy substituted tetraphenylporphyrins: Mechanism and superoxide scavenging activity, J. Porphyrins Phthalocyanines, 2016, vol. 20, p. 1477.
  12. Kuzmin, S.M., Chulovskaya, S.A., and Parfenyuk, V.I., Estimation of antioxidant activity of tetrakis(p‑aminophenyl)porphine regard to superoxide ions by voltammetry method, Macroheterocycles, 2013, vol. 6, p. 334.
  13. Kuz'min, S.M., Chulovskaya, S.A., Tesakova, M.V., Semeikin, A.S., and Parfenyuk, V.I., Substituted tetraphenylporphyrins as promising molecular systems with high antioxidant activity, Macroheterocycles, 2014, vol. 7, p. 218.
  14. Kuzmin, S.M., Chulovskaya, S.A., and Parfenyuk, V.I., Structures and properties of porphyrin-based film materials part I. The films obtained via vapor-assisted methods, Adv. Colloid Interface Sci., 2018, vol. 253, p. 23.
  15. Zhang, W., Lai, W., and Cao, R., Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems, Chem. Rev., 2017, vol. 117, p. 3717.
  16. Paolesse, R., Nardis, S., Monti, D., Stefanelli, M., and Di Natale, C., Porphyrinoids for Chemical Sensor Applications, Chem. Rev., 2017, vol. 117, p. 2517.
  17. Attia, A.A., El-Barry, A.M.A., EL-Shazly, E.A.A., and El-Deen, L.M.D., Studies on structural and optical properties of thermally evaporated nanocrystalline thinfilms of meso-tetraphenylporphyrin manganese(III) chloride, J. Lumin., 2018, vol. 199, p. 391.
  18. Jurow, M., Schuckman, A.E., Batteas, J.D., and Drain, C.M., Porphyrins as Molecular Electronic Components of Functional Devices, Coord. Chem. Rev., 2010, vol. 254, p. 2297.
  19. Bettelheim, A., White, B.A., Raybuck, S.A., and Murray, R.W., Electrochemical polymerization of amino-, pyrrole-, and hydroxy-substituted tetraphenylporphyrins, Inorg. Chem., 1987, vol. 26, p. 1009.
  20. Bedioui, F., Devynck, J., and Bied-Charreton, C., Immobilization of metalloporphyrins in electropolymerized films: design and applications, Acc. Chem. Res., 1995, vol. 28, p. 30.
  21. Pailleret, A., and Bedioui, F., N4-Macrocyclic Metal Complexes, J.H. Zagal, F. Bedioui, and J.-P. Dodelet, Eds., New York, Springer Science+Business Media, 2006, p. 363.
  22. Li, G., Bhosale, S., Tao, S., Guo, R., Bhosale, S., Li, F., Zhang, Y., Wang, T., and Fuhrhop, J.-H., Very stable, highly electroactive polymers of zinc(II)-5,15-bisthienylphenyl porphyrin exhibiting charge-trapping effects, Polymer, 2005, vol. 46, p. 5299.
  23. Durantini, J., Otero, L., Funes, M., Durantini, E.N., Fungo, F., and Gervaldo, M., Electrochemical oxidation-induced polymerization of 5,10,15,20-tetrakis[3-(N-ethylcarbazoyl)]porphyrin. Formation and characterization of a novel electroactive porphyrin thin film, Electrochim. Acta, 2011, vol. 56, p. 4126.
  24. Schaming, D. and Ruhlmann, L., Electrochemistry of N4 Macrocyclic Metal Complexes, vol. 2: Biomimesis, Electroanalysis and Electrosynthesis of MN4 Metal Complexes, Zagal, J.H. and Bedioui, F., Eds., Springer International Publishing, 2016, p. 395-432.
  25. Tesakova, M.V., Sheinin, V.B., and Parfenyuk, V.I., Physicochemical Properties of an Electroconductive Film Based on Tetrakis(para-aminophenyl)porphyrine, Russ. J. Phys. Chem. A, 2014, vol. 88, p. 325.
  26. Tesakova, M.V., Semeikin, A.S., and Parfenyuk, V.I., Electroconductive films based on amino-substituted tetraphenylporphyrins and their metal copper complexes, J. Porphyrins Phthalocyanines, 2016, vol. 20, p. 793.
  27. Kuzmin, S.M., Chulovskaya, S.A., Tesakova, M.V., Semeikin, A.S., and Parfenyuk, V.I., Solvent and electrode influence on electrochemical forming of poly-Fe(III)-aminophenylporphyrin films, J. Porphyrins Phthalocyanines, 2017, vol. 21, p. 555.
  28. Kuzmin, S.M., Chulovskaya, S.A., and Parfenyuk, V.I., Effect of anodic potential on process of formation of polyporphyrin film in solutions of tetrakis(p-aminophenyl)porphin in dichloromethane, Russ. J. Electrochem., 2014, vol. 50, p. 429.
  29. Kuzmin, S.M., Chulovskaya, S.A., and Parfenyuk, V.I., Superoxide-assisted electrochemical deposition of Mn-aminophenyl porphyrins: Process characteristics and properties of the films, Electrochim. Acta, 2018, vol. 292, p. 256.
  30. Kuzmin, S.M., Chulovskaya, S.A., Koifman, O.I., and Parfenyuk, V.I., Poly-porphyrin electrocatalytic films obtained via new superoxide-assisted electrochemical deposition method, Electrochem. Commun., 2017, vol. 83, p. 28.
  31. Kuzmin, S.M., Chulovskaya, S.A., and Parfenyuk, V.I., Electrochemically synthesized superoxide anion radical as an activator of electrodeposition of polyporphyrin films, Mendeleev Comm., 2017, vol. 27, p. 470.
  32. Semeikin, A.S., Koifman, O.I., and Berezin, B.D., Synthesis of tetraphenylporphins with active groups in the phenyl rings. 1. Preparation of tetrakis(4-aminophenyl)porphin, Chem. Heterocycl. Compd., 1982, vol. 18, p. 1046.
  33. Ormond, A.B. and Freeman, H.S., Effects of substituents on the photophysical properties of symmetrical porphyrins, Dyes Pigm., 2013, vol. 96, p. 440.
  34. Sluyters-Rehbach, M., Impedances of electrochemical systems: Terminology, nomenclature and representation – Part I: Cells with metal electrodes and liquid solutions (IUPAC Recommendations 1994), Pure Appl. Chem., 1994, vol. 66, p. 1831.
  35. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications,2nd edition, John Wiley & Sons, 2001.
  36. Stoinov, Z.B., Grafov, B.M., Savvova-Stoinova, B.S., Elektrokhimicheskii impedans (Electrochemical impedance), Moscow: Nayka, 1991.
  37. Pajkossy, T. and Nyikos, L., Diffusion to fractal surfaces—II. Verification of theory, Electrochim. Acta., 1989, vol. 34, p. 171.
  38. Impedance Spectroscopy: Theory, Experiment, and Applications, Barsoukov, E. and Macdonald, J.R., Eds., John Wiley & Sons, 2018.
  39. Huang, Yi-F., Kooyman, P.J., and Koper, M.T.M., Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy, Nat. Commun., 2016, vol. 7, p. 12440.
  40. Kariuki, J.K. and McDermott, M.T., Formation of Multilayers on Glassy Carbon Electrodes via the Reduction of Diazonium Salts, Langmuir, 2001, vol. 17, p. 5947.
  41. Chira, A., Bucur, B., and Radu G.-L., Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion, Materials, 2017, vol. 10, p. 235.
  42. Samanta, S., Das, K.P., Chatterjee, S., Sengupta, K., Mondal, B., and Dey, A., O2 Reduction Reaction by Biologically Relevant Anionic Ligand Bound Iron Porphyrin Complexes, Inorg. Chem., 2013, vol. 52, p. 12963.