Synthesis and Characterization of Tungsten Trioxide/Polyaniline/Polyacrylonitrile Composite Nanofibers for Application as a Counter Electrode of DSSCs

Sanaz Eslah Sanaz Eslah , Mahdi Nouri Mahdi Nouri
Российский электрохимический журнал
Abstract / Full Text

Electrospinning and spin-coating techniques were used for the fabrication of polyacrylonitrile/polyaniline/WO3 (PAN/PANI/WO3) nanocomposite nanofibers as a counter electrode of DSSCs. Scanning Electron Microscopy, Differential Scanning Calorimetry, Fourier Transform Infrared Spectroscopy, Cyclic Voltammetry and Electrochemical Impedance Spectroscopy were used for characterization of the fabricated nanofibers. Fabrication of bead-free and smooth nanofibers was confirmed and reduction of the average diameter of nanofibers by increasing in PANI content from 482 to 88 nm was clearly shown in SEM images. In the Spin-coating of WO3 nanoparticles on the surface of the PAN/PANI nanofibers, the lowest agglomeration was observed at 2 wt % of WO3. The results showed that the electrocatalytic activity of the mats is enhanced when PANI content in the electrospinning solution increases. The same positive effect was obtained by the presence of WO3 nanoparticles on the surface of the mats. The results of the photoelectric analysis indicated that these novel fibrous nanocomposites with the efficiency equal to 2.72 can be usable as a new catalyst for DSSCs counter electrodes.

Author information
  • Department of Textile Engineering, Faculty of Engineering, University of Guilan, Guilan, Iran

    Sanaz Eslah & Mahdi Nouri

  1. Kalyanasundaram, K., Dye-Sensitized Solar Cells, EPFL Press, 2010.
  2. Miao, J., Miyauchi, M., Simmons, T.J., Dordick, J.S., and Linhardt, R.J., Electrospinning of nanomaterials and applications in electronic components and devices, J. Nanosci. Nanotech., 2010, vol. 10, pp. 5507–5519.
  3. Yue, G., Wu, J., Xiao, Y., Lin, J., Huang, M., Fan, L., and Yao, Y., A dye-sensitized solar cell based on PEDOT: PSS counter electrode, Chin. Sci. Bull., 2013, vol. 58, pp. 559–566.
  4. Theerthagiri, J., Senthil, A.R., Madhavan, J., and Maiyalagan, T., Recent progress in non-platinum counter electrode materials for dye-sensitized solar cells, Chem. Electro. Chem., 2015, vol. 2, pp. 928–945.
  5. Lee, Y.L., Chen, C.L., Chong, L.W., Chen, C.H., Liu, Y.F., and Chi, C.F., A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells, Electrochem. Commun., 2010, vol. 12, pp. 1662–1665.
  6. Calogero, G., Calandra, P., Irrera, A., Sinopoli, A., Citro, I., and Di Marco, G., A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells, Energ. Environ. Sci., 2011, vol. 4, pp. 1838–1844.
  7. Ramasamy, E., Lee, W.J., Lee, D.Y., and Song, J.S., Nanocarbon counterelectrode for dye sensitized solar cells, Appl. Phys. Lett., 2007, vol. 90, p. 173103.
  8. Murakami, T.N., Ito, S., Wang, Q., Nazeeruddin, M.K., Bessho, T., Cesar, I., Liska, P., Humphry-Baker, R., Comte, P., and Pechy, P., Highly efficient dye-sensitized solar cells based on carbon black counter electrodes, J. Electrochem. Soc., 2006, vol. 153, pp. A2255–A2261.
  9. Saranya, K., Rameez, M., and Subramania, A., Developments in conducting polymer based counter electrodes for dye-sensitized solar cells-an overview, Eur. Polym. J., 2015, vol. 66, pp. 207–227.
  10. Li, G., Song, J., Pan, G., and Gao, X., Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells, Energy. Environ. Sci., 2011, vol. 4, pp. 1680–1683.
  11. Guo, J., Liang, S., Shi, Y., Hao, C., Wang, X., and Ma, T., Transition metal selenides as efficient counterelectrode materials for dye-sensitized solar cells, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 28985–28992.
  12. Zhang, X., Chen, X., Zhang, K., Pang, S., Zhou, X., Xu, H., Dong, S., Han, P., Zhang, Z., and Zhang, C., Transition-metal nitride nanoparticles embedded in Ndoped reduced graphene oxide: superior synergistic electrocatalytic materials for the counter electrodes of dye-sensitized solar cells, J. Mater. Chem. A, 2013, vol. 1, pp. 3340–3346.
  13. Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L., Luo, G., Lin, Y., Xie, Y., and Wei, Y., Counter electrodes in dye-sensitized solar cells, Chem. Soc. Rev., 2017, vol. 46, pp. 5975–6023.
  14. Contractor, A., Sureshkumar, T.N., Narayanan, R., Sukeerthi, S., Lal, R., and Srinivasa, R., Conducting polymer-based biosensors, Electrochim. Acta., 1994, vol. 39, pp. 1321–1324.
  15. Gerard, M., Chaubey, A., and Malhotra, B., Application of conducting polymers to biosensors, Biosens. Bioelectron., 2002, vol. 17, pp. 345–359.
  16. Bai, H. and Shi, G., Gas sensors based on conducting polymers, Sensors, 2007, vol. 7, pp. 267–307.
  17. Snook, G.A., Kao, P., and Best, A.S., Conductingpolymer-based supercapacitor devices and electrodes, J. Power Sources, 2011, vol. 196, pp. 1–12.
  18. Shi, Y., Peng, L., Ding, Y., Zhao, Y., and Yu, G., Nanostructured conductive polymers for advanced energy storage, Chem. Soc. Rev., 2015, vol. 44, pp. 6684–6696.
  19. Qiu, Y., Lu, S., Wang, S., Zhang, X., He, S., and He, T., High-performance polyaniline counter electrode electropolymerized in presence of sodium dodecyl sulfate for dye-sensitized solar cells, J. Power Sources, 2014, vol. 253, pp. 300–304.
  20. Ameen, S., Akhtar, M.S., Kim, Y.S., Yang, O.B., and Shin, H.S., Sulfamic acid-doped polyaniline nanofibers thin film-based counter electrode: application in dye-sensitized solar cells, J. Phys. Chem. C, 2010, vol. 114, pp. 4760–4764.
  21. Zhang, J., Hreid, T., Li, X., Guo, W., Wang, L., Shi, X., Su, H., and Yuan, Z., Nanostructured polyaniline counter electrode for dye-sensitised solar cells: fabrication and investigation of its electrochemical formation mechanism, Electrochim. Acta., 2010, vol. 55, pp. 3664–3668.
  22. Li, Q., Wu, J., Tang, Q., Lan, Z., Li, P., Lin, J., and Fan, L., Application of microporous polyaniline counter electrode for dye-sensitized solar cells, Electrochem. Commun., 2008, vol. 10, pp. 1299–1302.
  23. Qin, Q., Tao, J., Yang, Y., and Dong, X., In situ oxidative polymerization of polyaniline counter electrode on ITO conductive glass substrate, Polym. Eng. Sci., 2011, vol. 51, p. 663.
  24. Shi, X., Zhou, W., Ma, D., Ma, Q., Bridges, D., Ma, Y., and Hu, A., J. Nanomater., 2015, vol. 16, pp. 122–669.
  25. Fang, J., Shao, H., Niu, H., and Lin, T., in Handbook of Smart Textiles, Tao, X., Ed., Singapore: Springer, 2016, pp. 1–29.
  26. Mei, J. and Bao, Z., Side chain engineering in solutionprocessable conjugated polymers, Chem. Mater., 2013, vol. 26, pp. 604–615.
  27. Osaka, I. and McCullough, R.D., Advances in molecular design and synthesis of regioregular polythiophenes, Acc. Chem. Res., 2008, vol. 41, pp. 1202–1214.
  28. Dufour, B., Rannou, P., Djurado, D., Janeczek, H., Zagorska, M., de Geyer, A., Travers, J.-P., and Pron, A., Stretchable polyaniline of metallic-type conductivity: role of dopant engineering in the control of polymer supramolecular organization and in the tuning of its properties, Chem. Mater., 2003, vol. 15, pp. 1587–1592.
  29. Bredas, J., Themans, B., Fripiat, J., Andre, J., and Chance, R., Highly conducting polyparaphenylene, polypyrrole, and polythiophene chains: an ab initio study of the geometry and electronic-structure modifications upon doping, Phys. Rev. B, 1984, vol. 29, pp. 6761–6773.
  30. Yanilmaz, M. and Sarac, A.S., A review: effect of conductive polymers on the conductivities of electrospun mats, Text. Res. J., 2014, vol. 84, pp. 1325–1342.
  31. Lin, Q., Li, Y., and Yang, M., Polyaniline nanofiber humidity sensor prepared by electrospinning, Sens. Actuators B: Chem., 2012, vol. 161, pp. 967–972.
  32. Pinto, N., Johnson, A., Jr., MacDiarmid, A., Mueller, C., Theofylaktos, N., Robinson, D., and Miranda, F., Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor, Appl. Phys. Lett., 2003, vol. 83, pp. 4244–4246.
  33. Díaz-de Léon, M.J., Electrospinning nanofibers of polyaniline and polyaniline/(polystyrene and polyethylene oxide) blends, Proc. Nat. Conf. on Undergraduate Research (NCUR), University of Kentucky, 2001, pp. 15–17.
  34. Picciani, P.H., Medeiros, E.S., Pan, Z., Orts, W.J., Mattoso, L.H., and Soares, B.G., Development of conducting polyaniline/poly (lactic acid) nanofibers by electrospinning, J. Appl. Polym. Sci., 2009, vol. 112, pp. 744–753.
  35. Picciani, P.H.S., Medeiros, E.S., Pan, Z., Wood, D.F., Orts, W.J., Mattoso, L.C., and Soares, B.G., Mechanical, and thermal properties of electrospun poly (lactic acid)/polyaniline blend fibers, Macromol. Mater. Eng., 2010, vol. 295, pp. 618–627.
  36. Al-Jallad, M. and Atassi, Y., Preparation of nonwoven mats of electrospun poly (lactic acid)/polyaniline blend nanofibers: a new approach, J. Appl. Polym. Sci., 2016, vol. 133, p. 43687.
  37. Veluru, J.B., Satheesh, K., Trivedi, D., Ramakrishna, M.V., and Srinivasan, N.T., Electrical properties of electrospun fibers of PANI-PMMA composites, J. Eng. Fibers Fabrics, 2007, vol. 2, pp. 25–31.
  38. Hong, K.H. and Kang, T.J., Polyaniline-nylon 6 composite nanowires prepared by emulsion polymerization and electrospinning process, J. Appl. Polym. Sci., 2006, vol. 99, pp. 1277–1286.
  39. Zarrini, K., Rahimi, A.A., Alihosseini, F., and Fashandi, H., Highly efficient dye adsorbent based on polyaniline-coated nylon-6 nanofibers, J. Clean. Prod., 2017, vol. 142, pp. 3645–3654.
  40. Asiri, A.M., Electrospun polyaniline/polyvinyl alcohol/multiwalled carbon nanotubes nanofibers as promising bioanode material for biofuel cells, J. Electroanal. Chem., 2017, vol. 789, pp. 181–187.
  41. Fryczkowski, R. and Kowalczyk, T., Nanofibres from polyaniline/polyhydroxybutyrate blends, Synth. Met., 2009, vol. 159, pp. 2266–2268.
  42. Low, K., Horner, C.B., Li, C., Ico, G., Bosze, W., Myung, N.V., and Nam, J., Composition-dependent sensing mechanism of electrospun conductive polymer composite nanofibers, Sens. Actuators B: Chem., 2015, vol. 207, pp. 235–242.
  43. Sarvi, A., Chimello, V., Silva, A., Bretas, R., and Sundararaj, U., Coaxial electrospun nanofibers of poly (vinylidene fluoride)/polyaniline filled with multi walled carbon nanotubesб Polym. Compos., 2014, vol. 35, pp. 1198–1203.
  44. Cai, X., Huang, X., Zheng, Z., Xu, J., Tang, X., and Lei, T., Effect of polyaniline (emeraldine base) addition on α to β phase transformation in electrospun PVDF fibers, J. Macromol. Sci. B, 2017, vol. 56, pp. 75–82.
  45. Raeesi, F., Nouri, M., and Haghi, A.K., Electrospinning of polyaniline-polyacrylonitrile blend nanofibers, e-Polymers, 2009, vol. 9, pp. 1350–1362.
  46. Qavamnia, S.S. and Nasouri, K., onductive polyacrylonitrile/polyaniline nanofibers prepared by electrospinning process, Polym. Sci. Ser. A, 2015, vol. 57, pp. 343–349.
  47. Wang, J., Pan, K., Giannelis, E.P., and Cao, B., Polyacrylonitrile/polyaniline core/shell nanofiber mat for removal of hexavalent chromium from aqueous solution: mechanism and applications, RSC. Adv., 2013, vol. 3, pp. 8978–8987.
  48. Taghipoor, F., Semnani, D., Naghashzargar, E., and Rezaei, B., Electrochemical properties of bi-component bundle of coaxial polyacrylonitrile/polyaniline nanofibers containing TiO2 nanoparticles, J. Compos. Mater., 2017, vol. 51, pp. 3355–3363.
  49. Zhang, C.L. and Yu, S.H., Nanoparticles meet electrospinning: recent advances and future prospects, Chem. Soc. Rev., 2014, vol. 43, pp. 4423–4448.
  50. Meyer, J., Hamwi, S., Kroger, M., Kowalsky, W., Riedl, T., and Kahn, A., Transition metal oxides for organic electronics: energetics, device physics and applications, Adv. Mater., 2012, vol. 24, pp. 5408–5427.
  51. Saito, Y., Uchida, S., Kubo, T., and Segawa, H., Surface-oxidized tungsten for energy-storable dye-sensitized solar cells, Thin Solid Films, 2010, vol. 518, pp. 3033–3036.
  52. Uppachai, P., Harnchana, V., Pimanpang, S., Amornkitbamrung, V., Brown, A.P., and Brydson, RM., A substoichiometric tungsten oxide catalyst provides a sustainable and efficient counter electrode for dye-sensitized solar cells, Electrochim. Acta, 2014, vol. 145, pp. 27–33.
  53. Kizildag, N., Ucar, N., Karacan, I., Onen, A., and Demirsoy, N., The effect of the dissolution process and the polyaniline content on the properties of polyacrylonitrile-polyaniline composite nanoweb, J. Ind. Text., 2016, vol. 45, pp. 1548–1570.
  54. Ucar, N., Kizildag, N., Onen, A., Karacan, I., and Eren, O., Polyacrylonitrile-polyaniline composite nanofiber webs: yffects of solvents, redoping process and dispersion technique, Fiber. Polym., 2015, vol. 16, pp. 2223–2236.
  55. Sedghi, R. Moazzami, H.R., Hosseiny Davarani, S.S., Nabid, M.R., and Keshtkar, A.R., A one step electrospinning process for the preparation of polyaniline modified TiO2/polyacrylonitile nanocomposite with enhanced photocatalytic activity, J. Alloys Compd., 2017, vol. 695, pp. 1073–1079.
  56. Tavakkol, E., Tavanai, H., Abdolmaleki, A., and Morshed, M., Production of conductive electrospun polypyrrole/poly (vinyl pyrrolidone) nanofibers, Synth. Met., 2017, vol. 231, pp. 95–106.
  57. Hara, K., Zhao, Z-G., Cui, Y., Miyauchi, M., Miyashita, M., and Mori, S., Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells, Langmuir, 2011, vol. 27, pp. 12730–12736.
  58. Zheng, H., Tachibana, Y., and Kalantar-zadeh, K., Dye-sensitized solar cells based on WO3, Langmuir, 2010, vol. 26, pp. 19148–19152.
  59. Xu, H., Li, X., and Wang, G., Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors, J. Power Sources, 2015, vol. 294, pp. 16–21.
  60. Parvatikar, N., Jain, S., Khasim, S., Revansiddappa, M., Bhoraskar, S., and Prasad, M.A., Electrical and humidity sensing properties of polyaniline/WO3 composites, Sens. Actuators B- Chem., 2006, vol. 114, pp. 599–603.
  61. Santato, C., Odziemkowski, M., Ulmann, M., and Augustynski, J., Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications, J. Am. Chem. Soc., 2001, vol. 123, pp. 10639–10649.
  62. Peng, S., Zhu, P., Wu, Y., Mhaisalkar, S.G., and Ramakrishna, S., Electrospun conductive polyanilinepolylactic acid composite nanofibers as counter electrodes for rigid and flexible dye-sensitized solar cells, RSC. Adv., 2012, vol. 2, pp. 652–657.
  63. An, H., An, G.H., and Ahn, H.J., Characterization of porous carbon nanofibers decorated with Pt catalysts for use as counter electrodes in dye-sensitized solar cells, J. Ceram. Process Res., 2015, vol. 16, pp. 208–212.
  64. MacDiarmid, A.G. and Epstein, A. J., The concept of secondary doping as applied to polyaniline, Synth. Met., 1994, vol. 65, nos. 2–3, pp. 103–116.
  65. MacDiarmid, A.G. and Epstein, A.J., Secondary doping in polyaniline, Synth. Met., 1995, vol. 69, nos. 1–3, pp. 85–92.
  66. Stejskal, J., Prokes, J., and Trchova, M., Reprotonated polyanilines: the stability of conductivity at elevated temperature, Polym. Degrad. Stabil., 2014, vol. 102, pp. 67–73.