Статья
2019

Oxygen Electroreduction on the Anthraquinone-Modified Thin-Film Carbon–Polymer Composite in Alkaline Solution


M. Yu. Chaika M. Yu. Chaika , V. V. Volkov V. V. Volkov , T. A. Kravchenko T. A. Kravchenko , D. V. Konev D. V. Konev , V. S. Gorshkov V. S. Gorshkov , V. A. Krysanov V. A. Krysanov , A. A. Bosyachenko A. A. Bosyachenko
Российский электрохимический журнал
https://doi.org/10.1134/S102319351911003X
Abstract / Full Text

Technical carbon CH210 was processed by chemical reduction of the diazo derivative of anthraquinone for surface modification. The presence of anthraquinone groups on the carbon surface was confirmed by attenuated total internal reflection (ATR) IR spectroscopy. Carbon with the anthraquinone-modified surface was deposited on a glassy carbon support using a polymer binder. The behavior of the thus obtained catalyst in oxygen electroreduction in an alkaline medium was studied by the rotating disk electrode method. The kinetic characteristics of the reaction were determined: half-wave potential, limiting current, number of electrons, Tafel slope, exchange current, and charge transfer coefficient. Hydrogen peroxide is formed on the surface of the carbon–polymer composite at higher positive potentials than on technical carbon and glassy carbon electrodes. Therefore, the proposed material can be used as an effective electrocatalyst for this reaction.

Author information
  • Voronezh State University, 394006, Voronezh, Russia

    M. Yu. Chaika, T. A. Kravchenko, V. S. Gorshkov, V. A. Krysanov & A. A. Bosyachenko

  • Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia

    V. V. Volkov

  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    D. V. Konev

References
  1. Sosnovskii, G.N., Sosnovskaya, N.G., Kovalyuk, E.N., and Sultanova, V.I., Osnovy elektrokhimicheskoi tekhnologii (Fundamentals of Chemical Technology), Angarsk: AGTA, 2005.
  2. Keita, B. and Nadjo, L., Catalytic synthesis of hydrogen peroxide: an attractive electrochemical and photoelectrochemical route to the reduction of oxygen, J. Electroanal. Chem., 1983, vol. 145, p. 431.
  3. Samanta, C., Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process, Appl. Catal., A, 2008, vol. 350, p. 133.
  4. Campos, M., Siriwatcharapiboon, W., Potter, R.J., and Horswell, S.L., Selectivity of cobalt-based catalysts towards hydrogen peroxide formation during the reduction of oxygen, Catal. Today, 2013, vol. 202, p. 135.
  5. Lobyntseva, E., Kallio, T., Alexeyeva, N., Tammeveski, K., and Kontturi, K., Electrochemical synthesis of hydrogen peroxide: Rotating disk electrode and fuel cell studies, Electrochim. Acta, 2007, vol. 52, p. 7262.
  6. Mirkhalaf, F., Tammeveski, K., and Schiffrin, D.J., Substituent effects on the electrocatalytic reduction of oxygen on quinone-modified glassy carbon electrodes, Phys. Chem. Chem. Phys., 2004, vol. 6, p. 1321.
  7. Kinetika slozhnykh elektrokhimicheskikh reaktsii (Kinetics of Complex Electrochemical Reactions), Kazarinov, V.E., Ed., Moscow: Nauka, 1981.
  8. Assumpção, M.H.M.T., De Souza, R.F.B., Rascio, D.C., Silva, J.C.M., Calegaro, M.L., Gaubeur, I., Paixão, T.R.L.C., Hammer, P., Lanza, M.R.V., and Santos, M.C., A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports, Carbon, 2011, vol. 49, p. 2842.
  9. Jeyabharathi, C., Hasse, U., Ahrens, P., and Sholz, F., Oxygen electroreduction on polycrystalline gold electrodes and on gold nanoparticle-modified glassy carbon electrodes, Solid State Electrochem., 2014, vol. 18, p. 3299.
  10. Guterman, V.E., Pustovaya, L.E., Guterman, A.V., and Vysochina, L.L., Borohydride synthesis of the Ptx‒Ni/C electrocatalysts and investigation of their activity in the oxygen electroreduction reaction, Russ. J. Electrochem., 2007, vol. 43, p. 1091.
  11. Gudko, O.E., Smirnova, N.V., Lastovina, T.A., and Guterman, V.E., Binary Pt–Me/C nanocatalysts: structure and catalytic properties toward the oxygen reduction reaction, Nanotechnol. Russ., 2009, vol. 4, p. 309.
  12. Tripachev, O.V. and Tarasevich, M.R., Effect of size in oxygen electroreduction on gold over a wide range of pH, Russ. J. Phys. Chem. A., 2013, vol. 87, p. 820.
  13. Brigadnova, N.S., Potapova, G.F., Davydov, R.I., Kasatkin, E.V., Mantuzov, A.V., and Kuznetsov, E.V., Modified graphitized carbon fiber materials for electrosynthesis of hydrogen peroxide, Izv. Vyssh. Uchebn. Zaved.,Khim. Khim. Tekhnol., 2013, vol. 56, no. 5, p. 19.
  14. Kornienko, G.V., Kolyagin, G.A., Kornienko, V.L., and Parfenov, V.A., Graphitized carbon materials for electrosynthesis of H2O2 from O2 in gas-diffusion electrodes, Russ. J. Electrochem., 2016, vol. 52, p. 983.
  15. Yi, Y., Wang, L., Li, G., and Guo, H., A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method, Catal. Sci. Technol., 2016, vol. 6, p. 1593.
  16. Shen, Y., Traube, M., and Wittstock, G., Detection of hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy, Anal. Chem., 2008, vol. 80, p. 750.
  17. Šljukic, B., Banks, C.E., Mentus, S., and Compton, R.G., Modification of carbon electrodes for oxygen reduction and hydrogen peroxide formation: The search for stable and efficient sonoelectrocatalysts, Phys. Chem. Chem. Phys., 2004, vol. 6, p. 992.
  18. Vaik, K., Sarapuu, A., Tammeveski, K., Mirkhalaf, F., and Schiffrin, D.J., Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH, J. Electroanal. Chem., 2004, vol. 564, p. 159.
  19. Tammeveski, K., Kontturi, K., Nichols, R.J., Potter, R.J., and Schiffrin, D.J., Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes, J. Electroanal. Chem., 2001, vol. 515, p. 101.
  20. Sarapuu, A., Helstein, K., Schiffrin, D.J., and Tammeveski, K., Kinetics of oxygen reduction on quinone-modified HOPG and BDD electrodes in alkaline solution, Electrochem. Solid-State Lett., 2005, vol. 8, p. E30.
  21. Potapova, G.F., Kasatkin, E.V., Panesh, A.M., Lozovskii, A.D., and Kozlova, N.V., Hydrogen peroxide electrosynthesis on nonplatinum materials, Russ. J. Electrochem., 2004, vol. 40, p. 1193.
  22. Pognon, G., Brousse, T., and Bélanger, D., Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors, Carbon, 2011, vol. 49, p. 1340.
  23. Tarasevich, M.R., Beketaeva, L.A., Efremov, B.N., Zagudaeva, N.M., Kuznetsova, L.N., Rybalka, K.V., and Sosenkin, V.E., Electrochemical properties of carbon black AD-100 and AD-100 promoted with pyropolymer of cobalt tetra(p-methoxyphenyl)porphyrin, Russ. J. Electrochem., 2004, vol. 40, p. 542.
  24. Kolyagin, G.A. and Kornienko, V.L., The effect of carbon black mixture composition on the structural and electrochemical characteristics of gas diffusion electrodes for electrosynthesis of hydrogen peroxide, Russ. J. Electrochem., 2016, vol. 52, p. 185.
  25. Wang, B., Recent development of non-platinum catalysts for oxygen reduction reaction, J. Power Sources, 2005, vol. 152, p. 1.
  26. Guerrini, E. and Trasatti, S., Recent developments in understanding factors of electrocatalysis, Russ. J. Electrochem., 2006, vol. 42, p. 1017.
  27. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya 2006.
  28. Huissoud A. and Tissot P., Electrochemical reduction of 2-ethy1-9, l0-anthraquinone (EAQ) and mediated formation of hydrogen peroxide in a two-phase medium, part I: Electrochemical behaviour of EAQ on a vitreous carbon rotating disc electrode (RDE) in the two-phase medium, Appl. Electrochem., 1999, vol. 29, p. 11.
  29. Appel, M. and Appleby, A.J., A ring-disk electrode study of the reduction of oxygen on active carbon in alkaline solution, Electrochim. Acta, 1978, vol. 23, p. 1243.