Examples



mdbootstrap.com



 
Статья
2021

Influence of the Hydrothermal Synthesis Conditions on the Photocatalytic Activity of Titanium Dioxide Nanorods


T. M. SerikovT. M. Serikov, N. Kh. IbrayevN. Kh. Ibrayev, T. M. IvanovaT. M. Ivanova, S. V. SavilovS. V. Savilov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427221040030
Abstract / Full Text

Films of TiO2 nanorods prepared under different conditions of hydrothermal synthesis were studied. With an increase in the hydrothermal synthesis temperature at a synthesis time of 24 h, the length of the TiO2 nanorods formed first increases and then decreases, and the nanorod diameter changes. The TiO2 film consisting of nanorods 4100 nm long and 100 nm in diameter, prepared at 180°C, exhibits the highest photocatalytic activity. This effect is predominantly associated with high specific surface area of the samples.

Author information
  • Academician Buketov Karaganda University, ul. Universitetskaya 28, 10026, Karaganda, KazakhstanT. M. Serikov & N. Kh. Ibrayev
  • Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, RussiaT. M. Ivanova & S. V. Savilov
  • Faculty of Chemistry, Moscow State University, 119991, Moscow, RussiaS. V. Savilov
References
  1. Lazar, M.A., Varghese, S., and Nair, S.S., Catalysts, 2012, vol. 2, no. 4, pp. 572–601. https://doi.org/10.3390/catal2040572
  2. Zhao, Y., Hoivik, N., and Wang, K.Y., Nano Energy, 2016, vol. 30, pp. 728–744. https://doi.org/10.1016/j.nanoen.2016.09.027
  3. Serikov, T.M., Ibrayev, N.K., Nuraje, N., Savilov, S.V., and Lunin, V.V., Russ. Chem. Bull., 2017, vol. 66, no. 4, pp. 614–621. https://doi.org/10.1007/s11172-017-1781-0 
  4. Wang, F.Y., Song, L.F., and Zhang, H.C., J. Electron. Mater., 2017, vol. 46, no. 8, pp. 4716–4724. https://doi.org/10.1007/s11664-017-5491-z
  5. Serikov, T.M., Ibrayev, N.K., and Smagulov, Z., IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 110, ID 012066. https://doi.org/10.1088/1757-899X/110/1/012066
  6. Yamazaki, Y., Fujitsuka, M., and Yamazaki, S., ACS Appl. Nano Mater., 2019, vol. 2, pp. 5890−5899. https://doi.org/10.1021/acsanm.9b01334
  7. Liu, B., Boercker, J.E., and Aydil, E.S., Nanotechnology, 2008, vol. 19, no. 50, pp. 505604–505609. https://doi.org/10.1088/0957-4484/19/50/505604
  8. Yamazaki, Y., Azami, K., Katoh, R., and Yamazaki, S., ACS Appl. Nano Mater., 2018, vol. 10, pp. 5927–5935. https://doi.org/10.1021/acsanm.8b01617
  9. Hwang, Y.J., Hahn, C., Liu, B., and Yang, P., ACS Nano, 2012, vol. 6, no. 6, pp. 5060–5069. https://doi.org/10.1021/nn300679d
  10. Kerkez, Ö. and Boz, I., React. Kinet. Mech. Catal., 2013, vol. 110, pp. 543–557. https://doi.org/10.1007/s11144-013-0616-8
  11. Liu, B. and Aydil, E.S., J. Am. Chem. Soc., 2009, vol. 131, no. 11, pp. 3985–3990. https://doi.org/10.1021/ja8078972
  12. Ravidhas, C., Anitha, B., Arivukarasan, D., Venkatesh, R., Christy, A.J., Jothivenkatachalam, K., and Sanjeeviraja, C., J. Mater. Sci.: Mater. Electron., 2016, vol. 27, no. 5, pp. 5020–5032. https://doi.org/10.1007/s10854-016-4389-5
  13. Kwon, C.H., Shin, H.M., Kim, J.H., Choi, W.S., and Yoon, K.H., Mater. Chem. Phys., 2004, vol. 86, no. 1, pp. 78–82. https://doi.org/10.1016/j.matchemphys.2004.02.024
  14. Kahr, G. and Madsen, F.T., Appl. Clay Sci., 1995, vol. 9, no. 5, pp. 327–336. https://doi.org/10.1016/0169-1317(94)00028-o