Redox Properties and Reactivity of Organic Trisulfides in Reactions with Alkenes

D. A. Burmistrova D. A. Burmistrova , I. V. Smolyaninov I. V. Smolyaninov , N. T. Berberova N. T. Berberova
Российский электрохимический журнал
Abstract / Full Text

The redox reactions of organic trisulfides containing various hydrocarbon groups with alkenes in aprotic solvents were studied. The electrooxidation of trisulfides proceeds irreversibly by the ECE mechanism, with formation of sulfur-centered RS+ and RSS+ intermediates. The generated cations enter into electrophilic addition reactions with alkenes, forming asymmetric di- and monosulfides. The electrochemical reduction of trisulfides leads to the formation of a radical anion, which is fragmented into the RSS anion and RS radical. In the presence of acetic acid, the cathodic activation of trisulfides is accompanied by the formation of alkyl and phenyl hydrodisulfides (RSSH).

Author information
  • Astrakhan State Technical University, 414056, Astrakhan, Russia

    D. A. Burmistrova, I. V. Smolyaninov & N. T. Berberova

  • Southern Research Center, Russian Academy of Sciences, 344006, Rostov-on-Don, Russia

    I. V. Smolyaninov

  1. Vo, C.D., Kilcher, G., and Tirelli, N., Polymers and sulfur: What are organic polysulfides good for? Preparative strategies and biological applications, Macromol. Rapid Commun., 2009, vol. 30, p. 299. https://doi.org/10.1002/marc.200800740
  2. Wu, D., Hu, Q., and Zhu, Y., Therapeutic application of hydrogen sulfide donors: The potential and challenges, Front. Med., 2016, vol. 10, p. 18. https://doi.org/10.1007/s11684-015-0427-6
  3. Saidu, N.E.B., Valente, S., Bana, E., Kirsch, G., Bagrel, D., and Montenarh, M., Coumarin polysulfides inhibit cell growth and induce apoptosis in HCT116 colon cancer cells, Bioorg. Med. Chem., 2012, vol. 20, p. 1584. https://doi.org/10.1016/j.bmc.2011.12.032
  4. Putnik, P., Gabrić, D., Roohinejad, S., Barba, F.J., Granato., D., Mallikarjunan, K., Lorenzo, J.M., and Kovačevića, D.B., An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties, Food Chem., 2019, vol. 276, p. 680. https://doi.org/10.1016/j.foodchem.2018.10.068
  5. An, H., Zhu J., Wang, X., and Xu, X., Synthesis and anti-tumor evaluation of new trisulfide derivatives, Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 4826. https://doi.org/10.1016/j.bmcl.2006.06.070
  6. Fukao, T., Hosono, T., Misawa, S., Seki, T., and Ariga, T., The effects of allyl sulfides on the induction of phase II detoxification enzymes and liver injury by carbon tetrachloride, Food Chem. Toxicol., 2004, vol. 42, p. 743. https://doi.org/10.1016/j.fct.2003.12.010
  7. Cerda, M.M., Zhao, Y., and Pluth, M.D., Thionoesters: A native chemical ligation-inspired approach to cysteine-triggered H2S donors, J. Am. Chem. Soc. 2018, vol. 140, p. 12574. https://doi.org/10.1021/jacs.8b07268
  8. Sochor, J., Dobes, J., Krystofova, O., Ruttkay-Nedecky, B., Babula, P., Pohanka, M., Jurikova, T., Zitka, O., Adam, V., Klejdus, B., and Kizek, R., Electrochemistry as a tool for studying antioxidant properties, Int. J. Electrochem. Sci., 2013, vol. 8, p. 8464
  9. Nguyen, T.B., Recent advances in organic reactions involving elemental sulfur, Adv. Synth. Catal., 2017, vol. 359, p. 1066. https://doi.org/10.1002/adsc.201601329
  10. Yi, H., Zhang, G., Wang, H., Huang, Z., Wang, J., Singh, A.K., and Lei, A., Recent advances in radical C−H activation/radical cross-coupling, Chem. Rev., 2017, vol. 117, p. 9016. https://doi.org/10.1021/acs.chemrev.6b00620
  11. Tang, S., Liu, Y., and Lei, A., Electrochemical oxidative cross-coupling with hydrogen evolution: A green and sustainable way for bond formation, Chem., 2018, vol. 4, p. 27. https://doi.org/10.1016/j.chempr.2017.10.001
  12. Tang, S., Zeng, L., and Lei, A., Oxidative R1-H/R2-H cross-coupling with hydrogen evolution, J. Am. Chem. Soc., 2018, vol. 140, p. 13128. https://doi.org/10.1021/jacs.8b07327
  13. Jiang, Y., Xu, K., and Zeng, C., Use of electrochemistry in the synthesis of heterocyclic structures, Chem. Rev., 2018, vol. 118 (9), p. 4485. https://doi.org/10.1021/acs.chemrev.7b00271
  14. Baker, L.A., A perspective and prospectus on single-entity electrochemistry, J. Am. Chem. Soc., 2018, vol. 140 (46), p. 15549. https://doi.org/10.1021/jacs.8b09747
  15. Yuan, Y., Yu, Y., Qiao, J., Liu, P., Yu, B., Zhang, W., Liu, H., He, M., Huang, Z., and Lei, A., Exogenous-oxidant-free electrochemical oxidative C–H sulfonylation of arenes/heteroarenes with hydrogen evolution, Chem. Comm., 2018, vol. 54, p. 11471. https://doi.org/10.1039/c8cc06451b
  16. Wang, Y., Deng, L., Mei, H., Du, B., Han, J., and Pan, Y., Electrochemical oxidative radical oxysulfuration of styrene derivatives with thiols and nucleophilic oxygen sources, Green Chem., 2018, vol. 20, p. 3444. https://doi.org/10.1039/C8GC01337C
  17. Lund, O. and Hammerich, O., Organic electrochemistry, Boca Raton: CRC Press, 2016, p. 1736.
  18. Do, Q.T., Elothmani, D., Simonet, J., and Guillanton, G.L., The electrochemical oxidation of dimethyl disulfide – anodic methylsulfanylation of phenols and aromatic ethers, Electrochim. Acta, 2005, vol. 50, p. 4792. https://doi.org/10.1016/j.electacta.2005.02.033
  19. Manmode, S., Matsumoto, K., Nokami, T., and Itoh, T., Electrochemical methods as enabling tools for glycosylation, Asian J. Org. Chem., 2018, vol. 7, p. 1719. https://doi.org/10.1002/ajoc.201800302
  20. Manmode, S., Kato, M., Ichiyanagi, T., Nokami, T., and Itoh, T., Automated electrochemical assembly of the β-(1,3)-β-(1,6)-glucan hexasaccharide using thioglucoside building blocks, Asian J. Org. Chem., 2018, vol. 7, p. 1802. https://doi.org/10.1002/ajoc.201800345
  21. Mandal, B. and Basu, B., Recent advances in S–S bond formation, RSC Adv., 2014, vol. 4, p. 13854. https://doi.org/10.1039/c3ra45997g
  22. Glass, R.S., Jouikov, V.V., and Bojkova, N.V., Electrochemical activation of dimethyl disulfide for electrophilic aromatic substitution, J. Org. Chem. 2001, vol. 66, p. 4440. https://doi.org/10.1021/jo010156x
  23. Matsumoto, K., Suga, S., and Yoshida, J., Organic reactions mediated by electrochemically generated ArS+, J. Org. Biomol. Chem., 2011, vol. 9, p. 2586. https://doi.org/10.1039/c0ob01070g
  24. Huang, P., Wang, P., Tang, S., Fu, Z., and Lei, A., Electro-oxidative cross S-H/S-H coupling with hydrogen evolution: A facile access to unsymmetrical disulfides, Angew. Chem. Int. Ed., 2018, vol. 57, p. 8115. https://doi.org/10.1002/anie.201803464
  25. Banerji, A. and Kalena, G.P., A new synthesis of organic trisulfides, Tetrahedron Lett., 1980, vol. 21, p. 3003. https://doi.org/10.1016/0040-4039(80)88021-X
  26. Derbesy, G. and Harpp., D.N., A simple method to prepare unsymmetrical di-, tri- and tetrasulfides, Tetrahedron Lett., 1994, vol. 35, no. 30, p. 5381. https://doi.org/10.1016/S0040-4039(00)73505-2
  27. Zysman-Colman, E. and Harpp, D.N., Optimization of the synthesis of symmetric aromatic tri- and tetrasulfides, J. Org. Chem., 2003, vol. 68, p. 2487. https://doi.org/10.1021/jo0265481
  28. Soleiman-Beigi, M. and Mohammadi, F., Simple and green method for synthesis of symmetrical dialkyl disulfides and trisulfides from alkyl halides in water; PMOxT as a sulfur donor, J. Sulfur Chem., 2017, vol. 38, p. 134. https://doi.org/10.1080/17415993.2016.1253696
  29. Kertmen, A., Lach, S., Rachon, J., and Witt, D., Novel and efficient methods for the synthesis of symmetrical trisulfides, Synthesis, 2009, no. 9, p. 1459. https://doi.org/10.1055/s-0028-1088161
  30. Xu, S., Wang, Y., Radford, M.N., Ferrell, A.J., and Xian, M., Synthesis of unsymmetric trisulfides from 9‑fluorenylmethyl disulfides, Org. Lett., 2018, vol. 20, p. 465. https://doi.org/10.1021/acs.orglett.7b03846
  31. Guillanton, G.L., Electrochemical activation of sulfur in organic solvents—new syntheses of thioorganic compounds with a sacrificial carbon-sulfur electrode, Sulfur Rep., 1992, vol. 12 (2), p. 405. https://doi.org/10.1080/01961779208048949
  32. Berberova, N.T., Smolyaninov, I.V., Shinkar, E.V., Kuzmin, V.V., Sediki, D.B., and Shvetsova, A.V., Electrosynthesis of biologically active dicycloalkyl di- and trisulfides involving an H2S-S8 redox system, Russ. Chem. Bull., 2018, vol. 67, no. 1, p. 108. https://doi.org/10.1007/s11172-018-2044-4
  33. Shinkar, E.V., Shvetsova, A.V., Sediki, D.B., and Berberova, N.T., Redox activation of hydrogen sulfide in reaction with cycloheptane, Russ. J. Electrochem., 2015, vol. 51, no. 11, p. 1182. https://doi.org/10.1134/S1023193515110178
  34. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., and Pashchenko, K.P., Redox mediators of hydrogen sulfide oxidation in reactions with cycloalkanes, Dokl. Chem., 2015, vol. 465, no. 6, p. 683. https://doi.org/10.1134/S0012500815120058
  35. Berberova, N.T., Smolyaninov, I.V., Shinkar, E.V., Burmistrova, D.A., Andzhigaeva, V.V., and Sultanova, M.U., Electrosynthesis of polysulfides R2Sn (n = 2–4) based on cycloalkanes and S8 via bromide-mediated oxidation of H2S, Int. J. Electrochem. Sci., 2019, vol. 14, p. 531. https://doi.org/10.20964/2019.01.15
  36. Vineyard, B.D., Mercaptan-sulfur reaction. Alkyl trisulfides, J. Org. Chem., 1966, vol. 31 (2), p. 601. https://doi.org/10.1021/jo01340a511
  37. Gordon, A.J. and Ford, R.A., The Chemist’s Companion, New York: Wiley, 1972.
  38. Lam, K. and Geiger, W.E., Anodic oxidation of disulfides: Detection and reactions of disulfide radical cations, J. Org. Chem., 2013, vol. 78 (16), p. 8020. https://doi.org/10.1021/jo401263z
  39. Guillanton, G.L., Determination of mixtures of polysulfides by cyclic voltammetry, J. Electrochem. Soc., 1996, vol. 143 (10), p. 223. https://doi.org/10.1149/1.1837151
  40. Berberova, N.T. and Shinkar, E.V., The radical cation of hydrogen sulfide and related organic reactions, Russ. Chem. Bull., 2000, vol. 49, p. 1178. https://doi.org/10.1007/BF02495758
  41. Bailey, T.S., Zakharov, L.N., and Pluth, M.D., Understanding hydrogen sulfide storage: probing conditions for sulfide release from hydrodisulfides, J. Am. Chem. Soc., 2014, vol. 136, p. 10573. https://doi.org/10.1021/ja505371z