Redox functionalization of carbon electrodes of electrochemical capacitors

A. S. Ermakova A. S. Ermakova , A. V. Popova A. V. Popova , M. Yu. Chayka M. Yu. Chayka , T. A. Kravchenko T. A. Kravchenko
Российский электрохимический журнал
Abstract / Full Text

It is shown that the liquid oxidative treatment of microporous active carbon (AC) of the Norit DLC Supra 30 grade by nitric acid in the presence of carbamide results in an increase in the content of hydroxy groups on the AC surface at the practically unchanged content of carboxyl groups. Redox functionalization and appearance of pseudocapacity result in an increase in the carbon electrode capacity by 26%. The surface state of the carbon material is characterized using the infrared spectroscopy and Boehm titrimetry techniques, while the electrochemical characteristics are studied using the method of cyclic voltammetry in 3 M sulfuric acid solution. Studies of degradation of the electrodes of the initial and modified active carbons show that capacity decreases by 3 and 8%, accordingly, after 1 thousand charging–discharge cycles.

Author information
  • Voronezh State University, Universitetskaya square 1, Voronezh, 394006, Russia

    A. S. Ermakova, A. V. Popova, M. Yu. Chayka & T. A. Kravchenko

  1. Kalyuzhnyi, S.V., Slovar’ nanotekhnologicheskikh i svyazannykh s nanotekhnologiyami terminov (Dictionary of Nanotechnological and Nanotechnology–Related Terms), Moscow: Fizmatlit, 2010, pp. 402–404.
  2. Conway, B.E., Electrochemical Supercapacitors, New York Kluwer Academic/Plenum Publishers, 1999.
  3. Beguin, F. and Frackowiak, E., Carbons for Electrochemical Energy Storage and Conversion Systems, New York CRC Press, 2009.
  4. Candelaria, S.L., Shao, Y., Zhou, W., Li, X., Xiao, J., Zhang, J.-G., Wang, Y., Liu, J., Li, J., and Cao, G., Nano Energy, 2012, vol. 1, p. 195.
  5. Inagaki, M., Konno, H., and Tanaike, O., J. Power Sources, 2010, vol. 195, p. 7880.
  6. Pandolfo, A.G. and Hollenkamp, A.F., J. Power Sources, 2006, vol. 157, p. 11.
  7. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors, Hoboken, New Jersey: Wiley, 2015, pp. 263–313.
  8. Boehm, H.P., Carbon, 1994, vol. 32, p. 759.
  9. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984, p. 35.
  10. Trikhleb, V.A. and Trikhleb, L.M., RF Patent no. 2105715 (1998).
  11. Petrenko, D.B., Elektronnyi Zhurn. Vestn. Mosk. Gos. Obl. Univ., 2012, p. 157.
  12. Jaramillo, J., Alvarez, P.M., and Gomez-Serrano, V., Fuel Process. Technol., 2010, vol. 91, p. 1768.
  13. Zhu, T., Lu, Y., Zheng, S., Chen, Y., and Guo, H., Electrochim. Acta, 2015, vol. 152, p. 456.
  14. Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF-, IK- i YaMR-spektroskopii v organicheskoi khimii. Ucheb. Posobie dlya vuzov (Application of UV,IR, and NMR Spectroscopy in Organic Chemistry. Textbook for Higher Education Institutions), Moscow Vysshaya shkola, 1971.
  15. Oda, H., Yamashita, A., Minoura, S., Okamoto, M., and Morimoto, T., J. Power Sources, 2006, vol. 158, p. 1510.
  16. Seredych, M., Hulicova-Jurcakova, D., Lu, G.Q., and Bandosz, T.J., Carbon, 2008, vol. 46, p. 1475.
  17. Ponomarenko, I.V., Solyanikova, A.S., Chayka, M.Yu., Parfenov, V.A., Kirik, S.D., and Kravchenko, T.A., Russ. J. Electrochem., 2015, vol. 51, p. 764.