Examples



mdbootstrap.com



 
Статья
2020

Selective Liquid Phase Hydrogenation of Aromatic Nitro Compounds in the Presence of Fe–Cu Nanoparticles


A. A. ShesterkinaA. A. Shesterkina, A. A. StrekalovaA. A. Strekalova, L. M. KustovL. M. Kustov
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420060217
Abstract / Full Text

Fe–Cu bimetallic oxide nanoparticles supported on silica gel that catalyze the hydrogenation of nitrobenzene to aniline and of dinitrobenzenes to phenylenediamines under relatively mild reaction conditions (200°C, \({{p}_{{{{{\text{H}}}_{2}}}}}\) 1.3 MPa, 4 h, and 700 rpm) are synthesized. The catalytic properties of supported bimetallic Fe–Cu catalysts depend on the synthesis procedure, sample composition, and conditions of thermal treatment. There is a synergistic effect of interaction between Cu and Fe in the hydrogenation of nitrobenzene, 1,3-dinitrobenzene, and 1,4-dinitrobenzene in the presence of a bimetallic Fe–Cu catalyst obtained via coprecipitation.

Author information
  • Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119334, Moscow, RussiaA. A. Shesterkina, A. A. Strekalova & L. M. Kustov
  • National University of Science and Technology (MISIS), 119049, Moscow, RussiaA. A. Shesterkina, A. A. Strekalova & L. M. Kustov
  • Department of Chemistry, Moscow State University, 119991, Moscow, RussiaL. M. Kustov
References
  1. R. Millán, L. Liu, M. Boronat, and A. Corma, J. Catal. 364, 19 (2018).
  2. P. Zhou, Z. Zhang, L. Jiang, C. Yu, et al., Appl. Catal. B: Environ. 210, 522 (2017).
  3. L. Huang, Y. Lv, Sh. Wu, et al., Appl. Catal. A: Gen. 577, 76 (2019).
  4. J. Magano and J. R. Dunetz, Chem. Rev. 111, 2177 (2011).
  5. J. Song, Z. Huang, L. Pan, et al., Appl. Catal. B 227, 386 (2018).
  6. K. V. Vikanova, J. Phys. Chem. 92, 2374 (2018).
  7. K. K. Yeong, A. Gavriilidis, R. Zapf, and V. Hessel, Catal. Today 81, 641 (2003).
  8. Y. Peng, Z. Geng, and S. Zhao, Nano Lett. 18, 3785 (2018).
  9. C. S. Couto, L. M. Madeira, C. P. Nunes, and P. Araújo, Appl. Catal. A: Gen. 522, 152 (2016).
  10. S. I. El-Hout, S. M. El-Sheikh, M. A. Hassan, et al., Appl. Catal. A: Gen. 503, 176 (2015).
  11. F. Figueras and B. Coq, J. Mol. Catal. A 173, 223 (2011).
  12. H. Cheng, W. Lin, X. Li, et al., Catalysts 4, 276 (2014).
  13. E. V. Shuvalova, O. A. Kirichenko, and L. M. Kustov, Russ. Chem. Bull., Int. Ed. 66, 34 (2017).
  14. L. Lang, Z. Pan, and J. Yan, J. Alloys Compd., 286 (2019).
  15. I. Sorribes, L. Liu, and A. Corma, ACS Catal. 7, 2698 (2017).
  16. Y. Zheng, K. Ma, and H. Wang, Catal. Lett. 124, 268 (2008).
  17. O. Beswick, I. Yuranov, D. T. L. Alexander, and L. Kiwi-Minsker, Catal. Today 249, 45 (2015).
  18. M. Nilesh, T. Patil, B. Sasaki, et al., ACS Sustainable Chem.: Eng. 4, 429 (2016).
  19. R. Yun, L. Hong, and W. Ma, ChemCatChem 11, 724 (2019).
  20. O. Kirichenko, G. Kapustin, V. Nissenbaum, et al., J. Therm. Anal. Calorim. 134, 233 (2018).
  21. A. A. Shesterkina, E. V. Shuvalova, O. A. Kirichenko, et al., Russ. J. Phys. Chem. A 91, 201 (2017).
  22. A. A. Davydov, Molecular Spectroscopy of Oxide Catalyst Surfaces (Wiley Interscience, New York, 2003).