Electrochemical Properties of Electrode Materials Based on Pr5Mo3O16 + δ

N. V. LyskovN. V. Lyskov, A. I. KotovaA. I. Kotova, S. Ya. IstominS. Ya. Istomin, G. N. MazoG. N. Mazo, E. V. AntipovE. V. Antipov
Российский электрохимический журнал
Abstract / Full Text

The electrochemical activity of electrode materials based on Pr5Mo3O16 + δ (РМО), and applied on the surface of Ce0.9Gd0.1O1.95 (GDC) solid electrolyte is studied in the temperature range from 873 to 1173 K under oxidative (air) and reductive (Ar/H2) conditions. The polarization resistance (Rη) at 1073 K is found to be 8.8 and 4.8 Ω cm2 in air and in the reductive atmosphere, respectively. With the aim of enhancing the electrochemical activity of РМО in the oxygen reduction reaction, the electrochemical properties of PМО–xGDC and PМО–xPr6O11 composite electrodes are studied in air. The PМО–xPr6O11 composites are shown to be the best choice from the viewpoint of attaining the high electrochemical efficiency. When going from single-phase РМО to the PMO–xPr6O11 composite, a considerable decrease in Rη is observed (by an order of magnitude for х = 50 wt % Pr6O11, i.e., to 0.6 Ω cm2 at 1073 K in air). The data obtained here show that PMO can serve as the basis in elaborating the electrode material for symmetrical solid-oxide fuel cells.

Author information
  • NTI Competence Center, Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, RussiaN. V. Lyskov
  • Moscow State University, Faculty of Chemistry, Leninskie Gory, 119992, Moscow, RussiaA. I. Kotova, S. Ya. Istomin, G. N. Mazo & E. V. Antipov
  1. Perovskite Oxide for Solid Oxide Fuel Cells, Ishihara, T. Ed., New York: Springer, 2009.
  2. Bredikhin, S.I., Golodnitskii, A.E., Drozhzhin, O.A., Istomin, S.Ya., Kovalevskii, V.P., and Filippov, S.P., Statsionarnye energeticheskie ustanovki s toplivnymi elementami: materialy, tekhnologii, rynki (Stationary Power Stations with Fuel Cells: Materials, Technologies, Markets), Moscow, NTF Energoprogress, 2017.
  3. Ruiz-Morales, C., Marrero-López, D., Canales-Vázquez, J., and Irvine, J.T.S., Symmetric and reversible solid oxide fuel cell, RSC Adv., 2011, vol. 1, p. 1403.
  4. Su, C., Wang, W., Liu, M., Tadé, M.O., and Shao, Z., Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes, Adv. Energy Mater., 2015, vol. 5, p. 1.
  5. Ni, C., Feng, J., Cui, J., Zhou, J., and Ni, J., An n-type oxideFe0.5Mg0.25Ti0.25Nb0.9Mo0.1O4 – δ for both cathode and anode of a solid oxide fuel cell, J. Electrochem. Soc., 2017, vol. 164, p. F283.
  6. Tsai, M., Greenblatt, M., and McCarroll, W.H., Oxide ion conductivity in Ln5Mo3O16 +x (Ln = La, Pr, Nd, Sm, Gd; x = 0.5), Chem. Mater., 1989. vol. 1, p. 253.
  7. Voronkova, V.I., Leonidov, I.A., Kharitonova, E.P., Belov, D.A., Patrakeev, M.V., Leonidova, O.N., and Kozhevnikov, V.L., Oxygen ion and electron conductivity in fluorite-like molybdates Nd5Mo3O16 and Pr5Mo3O16, J. Alloys Compd., 2014, vol. 615, p. 395.
  8. Biendicho, J.J., Playford, H.Y., Rahman, S.M.H., Norberg, S.T., Eriksson, S.G., and Hull, S., The fluorite-like phase Nd5Mo3O16 ± δ in the MoO3−Nd2O3 system: synthesis, crystal structure, and conducting properties, Inorg. Chem., 2018, vol. 57, p. 7025.
  9. Istomin, S.Ya., Kotova, A.I., Lyskov, N.V., Mazo, G.N., and Antipov, E.V., Pr5Mo3O16 + δ: A new anode material for solid oxide fuel cells, Russ. J. Inorg. Chem., 2018, vol. 63, p. 1291.
  10. High Temperature and Solid Oxide Fuel Cell: Fundamentals, Design and Applications, Singhal, S.C. and Kendall, K., Eds., Amsterdam: Elsevier, 2003.
  11. Kenjo, T., Osawa, S., and Fujikawa, K. High-temperature air cathodes containing ion conductive oxides, J. Electrochem. Soc., 1991, vol. 138, p. 349.
  12. Kolchina, L.M., Lyskov, N.V., Petukhov, D.I., and Mazo, G.N., Electrochemical characterization of Pr2CuO4–Ce0.9Gd0.1O1.95 composite cathodes for solid oxide fuel cells, J. Alloys Compd., 2014, vol. 605, p. 89.
  13. Lyskov, N.V., Kolchina, L.M., Galin, M.Z., and Mazo, G.N., Development of lanthanum-doped praseodymium cuprates as cathode materials for intermediate-temperature solid oxide fuel cells, Solid State Ionics, 2018, vol. 319, p. 156.
  14. Taguchi, H., Chiba, R., Komatsu, T., Orui, H., Watanabe, K., and Hayashi, K., LNF SOFC cathodes with active layer using Pr6O11 or Pr-doped CeO2, J. Power Sources, 2013, vol. 241, p. 768.
  15. Vshivkova, A.I. and Gorelov, V.P., Activation of oxygen reaction by praseodymium oxide film on platinum electrode in contact with YSZ electrolyte, Russ. J. Electrochem., 2016, vol. 52, p. 488.
  16. Ding, X., Zhu, W., Hua, G., Li, J., and Wu, Z., Enhanced oxygen reduction activity on surface-decorated perovskite La0.6Ni0.4FeO3 cathode for solid oxide fuel cells, Electrochim. Acta, 2015, vol. 163, p. 204.
  17. Chiba, R., Taguchi, H., Komatu, T., Orui, H., Nozawa, K., and Araiet, H. High temperature properties of Ce1 –xPrxO2 – δ as an active layer material for SOFC cathodes, Solid State Ionics, 2011, vol. 197, p. 42.
  18. Liu, Q., Dong, X., Xiao, G., Zhao, F., and Chen, F., A novel electrode material for symmetrical SOFCs, Adv. Mater., 2010, vol. 22, p. 5478.
  19. Mazo, G.N., Lyskov, N.V., Istomin, S.Ya., and Antipov, E.V., Evaluation of La2CoTi0.7Mg0.3O6 as an electrode material for a symmetrical SOFC, J. Electroceram., 2018, vol. 40, p. 162.