Examples



mdbootstrap.com



 
Статья
2021

Optimization by Response Surface Methodology of the Adsorption of Anionic Dye on Superparamagnetic Clay/Maghemite Nanocomposite


Shokoofe RezaeiShokoofe Rezaei, Soraya RahpeimaSoraya Rahpeima, Javad EsmailiJavad Esmaili, Vahid JavanbakhtVahid Javanbakht
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427221040145
Abstract / Full Text

Magnetic nanoparticles and clay minerals combine to form a class of advanced nanocomposites that would possess exceptional adsorption, magnetism, and stability. In this work, an environmentally friendly nanocomposite was successfully fabricated by functionalizing natural clay. Bentonite сlay/meghemite nanocomposite was synthesized by the co-precipitation method and used to Methyl Orange pollutant removal as a toxic anionic dye from aqueous solutions. Physical and structural characteristics of the synthesized adsorbent were assessed using different techniques including Fourier transform infrared spectrometer, scanning electron microscopy, vibrating sample magnetometry, and X-ray diffraction. The saturation magnetization of maghemite and bentonite/maghemite nanocomposite are 50.9 and 28.5 emu g–1, respectively. The average size of the synthesized maghemite nanoparticles calculated by the Scherer equation was 16.60 nm. Different kinetic and thermodynamic models and isotherms of the adsorption process were also investigated. The adsorption capacity became equilibrium after 120 min. The consistency of the adsorption process with the pseudo-second-order kinetic model was confirmed by studying its kinetic data. Investigating the equilibrium isotherm data at different temperatures showed better compatibility with the Freundlich model. The negative values of ΔG and positive values of ΔH obtained from adsorption thermodynamic study revealed that Methyl Orange adsorption from aqueous samples is spontaneous and endothermic. The optimal parameters for Methyl Orange removal by synthesized adsorbent were determined by MINITAB 17 under response surface methodology (RSM). The maximum adsorption capacity of dye adsorption of 56.79 mg g–1 was obtained under optimum conditions of pH = 4, adsorbent dose of 1 g L–1 and dye concentration of 90 mg L–1.

Author information
  • ACECR Institute of Higher Education (Isfahan Branch), 84175-443, Isfahan, IranShokoofe Rezaei, Soraya Rahpeima, Javad Esmaili & Vahid Javanbakht
References
  1. Gupta, V.K. and Saleh, T.A., Env. Sci. & Pollution Res., 2013, vol. 20, no. 5, pp. 2828–2843. https://doi.org/10.1007/S11356-013-1524-1
  2. Paul, J., et al., Appl. Radiat. & Isot., 2011, vol. 69, no. 7, pp. 982–987. https://doi.org/10.1016/j.apradiso.2011.03.009
  3. Javanbakht, V., Alavi, S.A., and Zilouei, H., Water Sci. & Technol., 2014, vol. 69, no. 9, p. 1775. https://doi.org/10.2166/wst.2013.718
  4. Javanbakht, V. and Ghoreishi, S.M., Adsorption Science & Technology, 2017, vol. 35, nos. 1–2, pp. 241–260. https://doi.org/10.1177/0263617416674474
  5. Sabouri, M.R., Et Al., Process Safety and Environmental Protection, 2019, vol. 126, pp. 182–192. https://doi.org/10.1016/j.psep.2019.04.006
  6. Saravanan, R., et al., Colloid & Interface Science, 2015, vol. 452, pp. 126-133. https://doi.org/10.1016/j.jcis.2015.04.035
  7. Javanbakht, V., et al., Powder Technology, 2016, vol. 302, pp. 372-383. https://doi.org/10.1016/j.powtec.2016.08.069
  8. Al-Kdasi, A., et al., Global Nest, The Int. J, 2004, vol. 6, no. 3, pp. 222–230.
  9. Chen, S., et al., Desalination, 2010, vol. 2521–3, pp. 149–156. https://doi.org/10.1016/j.desal.2009.10.010
  10. Ofomaja, A.E. and Ho, Y.-S., Bioresource Technology, 2008, vol. 99, no. 13, pp. 5411–5417. https://doi.org/10.1016/j.biortech.2007.11.018
  11. Royer, B., et al., Hazardous Materials, 2009, vol. 164, nos. 2–3, pp. 1213–1222. https://doi.org/10.1016/j.jhazmat.2008.09.028
  12. Brookstein, D.S., Dermatologic Clinics, 2009, vol. 27, no. 3, pp. 309–322. https://doi.org/10.1016/j.det.2009.05.001
  13. Carneiro, P.A., et al., Hazardous Materials, 2010, vol. 174, nos. 1–3, pp. 694–699. https://doi.org/10.1016/j.jhazmat.2009.09.106
  14. Mehrabi, M. and Javanbakht, V, Materials Science, Materials In Electronics, 2018, vol. 29, no. 12, pp. 9908–9919. https://doi.org/10.1007/S10854-018-9033-0
  15. Bayat, M., et al., International Journal of Biological Macromolecules, 2018, vol. 116, pp. 607–619. https://doi.org/10.1016/J.Ijbiomac.2018.05.012
  16. Erfani, M. and Javanbakht, V., International Journal of Biological Macromolecules, 2018, vol. 114, pp. 244–255. https://doi.org/10.1016/J.Ijbiomac.2018.03.003
  17. Mirzaei, S. and Javanbakht, V., International Journal of Biological Macromolecules, 2019, vol. 134, pp. 1187–1204. https://doi.org/10.1016/j.ijbiomac.2019.05.119
  18. Haque, E., et al., Hazardous Materials, 2011, vol. 185, no. 1, pp. 507–511. https://doi.org/10.1016/j.jhazmat.2010.09.035
  19. Vaez, Z. and Javanbakht, V., Photochemistry & Photobiology A, Chemistry, 2019, vol. 388, p. 112064. https://doi.org/10.1016/j.jphotochem.2019.112064
  20. Chen, Z.-X., et al., Colloid and Interface Science, 2011, vol. 363, no. 2, pp. 601–607. https://doi.org/10.1016/j.jcis.2011.07.057
  21. Azizian, S., et al., Chemical Engineering, 2009, vol. 146, no. 1, pp. 36–41. https://doi.org/10.1016/j.cej.2008.05.024
  22. Rahpeima, S., et al., Inorganic and Organometallic Polymers and Materials, 2018, vol. 28, no. 1, pp. 195–211. https://doi.org/10.1007/S10904-017-0688-4
  23. Demirbas, E., et al., Bioresource Technology, 2008, vol. 99, no. 13, pp. 5368–5373. https://doi.org/10.1016/j.biortech.2007.11.019
  24. Keyvani, F., et al., Solid State Sciences, 2018, Vol. 83, pp. 31–42. https://doi.org/10.1016/j.solidstatesciences.2018.06.007
  25. Alver, E. and Metin, A.Ü. Chemical Engineering, 2012, vol. 200, pp. 59–67. https://doi.org/10.1016/j.cej.2012.06.038
  26. Wang, X.S., et al., Hazardous Materials, 2008. Vol. 157, nos. 2–3, pp. 374–385. https://doi.org/10.1016/j.jhazmat.2008.01.004
  27. Rosa, S., et al., Hazardous Materials, 2008, vol. 155, nos. 1–2, pp. 253–260. https://doi.org/10.1016/j.jhazmat.2007.11.059
  28. Tanabtabzadeh, M.S., et al., Waste and Biomass Valorization, 2019, vol. 10, no. 3, pp. 641–653. https://doi.org/10.1007/S12649-017-0086-8
  29. Liu, Y., et al., Chemical Engineering, 2013, vol. 218, pp. 46–54. https://doi.org/10.1016/j.cej.2012.12.027
  30. Javanbakht, V., et al., Protection of Metals and Physical Chemistry of Surfaces, 2017, vol. 53, no. 4, pp. 693–702. https://doi.org/10.1134/S2070205117040086
  31. Javanbakht, V., et al., Chemical and Pharmaceutical Research, 2016, vol. 8, no. 4, pp. 846–852.
  32. Demirbas, A., Hazardous Materials, 2009, vol. 167, no. 1, pp. 1–9. https://doi.org/10.1016/j.jhazmat.2008.12.114
  33. Mallakpour, S. and Hatami, M., Designed Monomers and Polymers, 2011, vol. 14, no. 5, pp. 461–473. https://doi.org/10.1163/138577211X587654
  34. Oliveira, L.C., et al., Carbon, 2002, vol. 40, no. 12, pp. 2177–2183. https://doi.org/10.1016/S0008-62230200076-3
  35. Sareban, Z. and Javanbakht, V., Korean Journal of Chemical Engineering, 2017, vol. 34, no. 11, pp. 2886–2900. https://doi.org/10.1007/S11814-017-0216-9
  36. Aeenjan, F. and Javanbakht, V., Research On Chemical Intermediates, 2018, vol. 44, no. 3, pp. 1459–1483. https://doi.org/10.1007/S11164-017-3179-X
  37. Gnanaprakash, G., et al., Materials Chemistry and Physics, 2007, vol. 103, no. 1, pp. 168–175. https://doi.org/10.1016/j.matchemphys.2007.02.011
  38. Lu, A.H., et al., Angewandte Chemie International Edition, 2007, vol. 46, no. 8, pp. 1222–1244. https://doi.org/10.1002/anie.200602866
  39. Chen, L., et al., Applied Clay Science, 2016, vol. 127, pp. 143–163. https://doi.org/10.1016/j.clay.2016.04.009
  40. Rechendorff, K., et al., Langmuir, 2006, vol. 22, no. 26, pp. 10885–10888. https://doi.org/10.1021/la0621923
  41. Özcan, A.S. and Özcan, A., Colloid and Interface Science, 2004, vol. 276, no. 1, pp. 39–46. https://doi.org/10.1016/j.jcis.2004.03.043
  42. Darezereshki, E., et al., Materials Science In Semiconductor Processing, 2013, vol. 16, no. 1, pp. 221–225. https://doi.org/10.1016/j.mssp.2012.08.007
  43. Tan, Y., et al., Chemical Engineering, 2012, vol. 191, pp. 104–111. https://doi.org/10.1016/j.cej.2012.02.075
  44. Xie, M., et al., Alloys and Compounds, 2015, vol. 647, pp. 892–905. https://doi.org/10.1016/j.jallcom.2015.06.065
  45. Zhao, G., et al., The Open Colloid Science, 2010, vol. 4, p. 1. https://doi.org/10.2174/1876530001104010019
  46. Foo, K. and Hameed, B., Chemical Engineering, 2010, vol. 156, no. 1, pp. 2–10. https://doi.org/10.1016/j.cej.2009.09.013
  47. Gautam, R.K., et al., Molecular Liquids, 2015, vol. 204, pp. 60–69. https://doi.org/10.1016/J.Molliq.2015.01.038
  48. Bayramoğlu, G. and Arica, M.Y., Chemical Engineering, 2008, vol. 139, no. 1, pp. 20–28. https://doi.org/10.1016/j.cej.2007.07.068
  49. Ma, J., et al., ACS Applied Materials & Interfaces, 2012, vol. 4, no. 11, pp. 5749–5760. https://doi.org/10.1021/am301053m
  50. Hao, Y.-M., et al., Hazardous Materials, 2010, vol. 184, no. 1, pp. 392–399. https://doi.org/10.1016/j.jhazmat.2010.08.048
  51. Chang, Y.C. and Chen, D.H., Macromolecular Bioscience, 2005, vol. 5, no. 3, pp. 254–261. https://doi.org/10.1002/Mabi.200400153
  52. Aksu, Z. and Gönen, F., Separation & Purification Technology, 2006, vol. 49, no. 3, pp. 205–216. https://doi.org/10.1016/j.seppur.2005.09.014
  53. Can, M.Y., et al., Bioresource Technology, 2006, vol. 97, no. 14, pp. 1761–1765. https://doi.org/10.1016/j.biortech.2005.07.017
  54. Ghorbani, F., et al., Chemical Engineering, 2008, vol. 145, no. 2, pp. 267–275. https://doi.org/10.1016/j.cej.2008.04.028
  55. Ahmed, M., et al., Materials Science & Engineering, B, 2013, vol. 178, no. 10, pp. 744–751. https://doi.org/10.1016/j.mseb.2013.03.011
  56. Dinu, M.V. and Dragan, E.S., Chemical Engineering, 2010, vol. 160, no. 1, pp. 157–163. https://doi.org/10.1016/j.cej.2010.03.029
  57. Wang, L. and Wang, A., Bioresource Technology, 2008, vol. 99, no. 5, pp. 1403–1408. https://doi.org/10.1016/j.biortech.2007.01.063
  58. Zhu, H., et al., Applied Surface Science, 2011, vol. 258, no. 4, pp. 1337–1344. https://doi.org/10.1016/j.apsusc.2011.09.045
  59. Kamaru, A.A., et al., Desalination & Water Treatment, 2016, vol. 57, no. 40, pp. 18836–18850. https://doi.org/10.1080/19443994.2015.1095122
  60. Shariati-Rad, M., et al., International Nano Letters, 2014, vol. 4, no. 4, pp. 91–101. https://doi.org/10.1007/S40089-014-0124-5
  61. Fan, J., et al., Colloid and Interface Science, 2016, vol. 470, pp. 229–236. https://doi.org/10.1016/j.jcis.2016.02.045
  62. Yang, H.-C., et al., Colloid and Interface Science, 2017, vol. 505, pp. 67–78. https://doi.org/10.1016/j.jcis.2017.05.075
  63. Karthika, J. and Vishalakshi, B., International Journal of Biological Macromolecules, 2015, vol. 81, pp. 648–655. https://doi.org/10.1016/j.ijbiomac.2015.08.064