Examples



mdbootstrap.com



 
Статья
2022

Solvent effect on the rate and direction of furfural transformations during hydrogenation over the Pd/C catalyst


R. M. MironenkoR. M. Mironenko, O. B. BelskayaO. B. Belskaya, V. A. LikholobovV. A. Likholobov
Российский химический вестник
https://doi.org/10.1007/s11172-022-3377-6
Abstract / Full Text

The rate and directions of transformations during the liquid-phase hydrogenation of furfural with molecular hydrogen in the presence of the 5%Pd/C catalyst (at 423 K, 3 MPa) depend substantially on the chemical nature of the solvent. The main products of the catalytic transformations in alcohols are alkyl furyl ethers. Hydrogenation in solvent environment of aromatic hydrocarbons and 1,4-dioxane (nonpolar solvents), as well as in ethyl acetate and DMF (polar aprotic solvents) leads to the predominant formation of furfuryl alcohol, and its highest selectivity (up to 92%) is achieved with the use of DMF.

Author information
  • Center of New Chemical Technologies, Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040, Omsk, RussiaR. M. Mironenko & O. B. Belskaya
  • Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 5 prosp. Akad. Lavrent’eva, 630090, Novosibirsk, RussiaV. A. Likholobov
References
  1. R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, M. López Granados, Energy Environ. Sci., 2016, 9, 1144; DOI: https://doi.org/10.1039/C5EE02666K.
  2. S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau, S. Royer, Chem. Rev., 2018, 118, 11023; DOI: https://doi.org/10.1021/acs.chemrev.8b00134.
  3. Y. Wang, D. Zhao, D. Rodríguez-Padrón, C. Len, Catalysts, 2019, 9, 796; DOI: https://doi.org/10.3390/catal9100796.
  4. J. Long, W. Zhao, H. Li, S. Yang, in Recent Advances in Development of Platform Chemicals, Eds S. Saravanamurugan, A. Pandey, H. Li, A. Riisager, Elsevier, Amsterdam, 2020, p. 299; DOI: https://doi.org/10.1016/B978-0-444-64307-0.00011-1.
  5. V. P. Kashparova, D. V. Chernysheva, V. A. Klushin, V. E. Andreeva, O. A. Kravchenko, N. V. Smirnova, Russ. Chem. Rev., 2021, 90, 750; DOI: https://doi.org/10.1070/RCR5018.
  6. I. L. Simakova, V. E. Taraban’ko, M. Yu. Chernyak, A. A. Kondrasenko, M. N. Simonova, Zh. SFU. Khim. [Siberian Federal Univ. J., Ser. Chem.], 2015, 8, 482 (in Russian); DOI: https://doi.org/10.17516/1998-2836-2015-8-4-482-490.
  7. R. Kosydar, I. Szewczyk, P. Natkański, D. Duraczyńska, J. Gurgul, P. Kuśtrowski, A. Drelinkiewicz, Surf. Interfaces, 2019, 17, 100379; DOI: https://doi.org/10.1016/j.surfin.2019.100379.
  8. R. M. Mironenko, V. P. Talsi, T. I. Gulyaeva, M. V. Trenikhin, O. B. Belskaya, React. Kinet., Mech. Catal., 2019, 126, 811; DOI: https://doi.org/10.1007/s11144-018-1505-y.
  9. R. M. Mironenko, O. B. Belskaya, AIP Conf. Proc., 2019, 2141, 020010; DOI: https://doi.org/10.1063/1.5122029.
  10. R. M. Mironenko, O. B. Belskaya, V. P. Talsi, V. A. Likholobov, J. Catal., 2020, 389, 721; DOI: https://doi.org/10.1016/j.jcat.2020.07.013.
  11. C. Reichardt, T. Welton, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 2011, 692 pp.; DOI: https://doi.org/10.1002/9783527632220.
  12. S. A. Durakov, P. V. Melnikov, E. M. Martsinkevich, A. A. Smirnova, R. S. Shamsiev, V. R. Flid, Russ. Chem. Bull., 2021, 70, 113; DOI: https://doi.org/10.1007/s11172-021-3064-z.
  13. A. B. Merlo, V. Vetere, J. F. Ruggera, M. L. Casella, Catal. Commun., 2009, 10, 1665; DOI: https://doi.org/10.1016/j.catcom.2009.05.005.
  14. P. Jia, X. Lan, X. Li, T. Wang, ACS Sustainable Chem. Eng., 2018, 6, 13287; DOI: https://doi.org/10.1021/acssuschemeng.8b02876.
  15. G. Giorgianni, S. Abate, G. Centi, S. Perathoner, S. van Beuzekom, S.-H. Soo-Tang, J. C. van der Waal, ACS Sustainable Chem. Eng., 2018, 6, 16235; DOI: https://doi.org/10.1021/acssuschemeng.8b03101.
  16. G. Singh, L. Singh, J. Gahtori, R. K. Gupta, C. Samanta, R. Bal, A. Bordoloi, Mol. Catal., 2021, 500, 111339; DOI: https://doi.org/10.1016/j.mcat.2020.111339.
  17. R. M. Mironenko, O. B. Belskaya, V. A. Likholobov, Solid Fuel Chem., 2020, 54, 362; DOI: https://doi.org/10.3103/S0361521920060087.