Examples



mdbootstrap.com



 
Статья
2016

Electrodeposition of cobalt–tungsten alloys and their application for surface engineering


N. Tsyntsaru N. Tsyntsaru
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516110136
Abstract / Full Text

Applying electrochemically deposited coatings is a convenient way to improve surface properties of a substrate metal. Today materials for applications are frequently selected according to their functional properties. Nowadays theoretical and practical studies of the co-deposition of tungsten with iron group metals are conducted worldwide, and interest for these studies increases. Tungsten alloys of iron group metals have a high melting point and are often considered high-performance alloys, and the attractiveness in those has been driven by their outstanding properties and multiple possible applications. That research is encouraged by the pronounced mechanical, tribological, and magnetic properties as well as the corrosion resistance of tungsten alloys. The magnetic properties of electrodeposited Co–W alloys are of interest in recording media and remotely-actuated micro-/nano-electromechanical systems. The given research presents an overview of versatile possibilities of Co–W alloys as multiscale materials obtained by electrodeposition from citrate solutions at pH 5–8 and temperatures 20–60°C. The paper discusses electrodeposited tungsten alloys as suitable candidates to meet many technological demands at macro-, micro- and nano-scale as coating films, microbumps and nanowires.

Author information
  • Institute of Applied Physics of ASM, Chisinau, MD-2028, Academiei 5, Moldova

    N. Tsyntsaru

  • Vilnius University, Faculty of Chemistry, Vilnius, LT-03325, Naugarduko 24, Lithuania

    N. Tsyntsaru

References
  1. Bromwich, W. and Midlands, W., T. I. Met. Finish., 2001, vol. 79, pp. B27–B30.
  2. Weston, D.P., Shipway, P.H., Harris, S.J., and Cheng, M.K., Wear, 2009, vol. 267, nos. 5–8, pp. 934–943.
  3. Weston, D.P., Harris, S.J., Capel, H., Ahmed, N., Shipway, P.H., and Yellup, J.M., T. I. Met. Finish., 2010, vol. 88, no. 1, pp. 47–56.
  4. Ghaferi, Z., Raeissi, K., Golozar, M.A., and Edris, H., Surf. Coat. Techn., 2011, vol. 206, pp. 497–505.
  5. Tsyntsaru, N., Cesiulis, H., Pellicer, E., Celis, J.-P., and Sort, J., Electrochim. Acta, 2013, vol. 104, pp. 94–103.
  6. Tsyntsaru, N., Cesiulis, H., Donten, M., Sort, J., Pellicer, E., and Podlaha-Murphy, E.J., Surf. Eng. Appl. Electrochem., 2012, vol. 48, pp. 491–520.
  7. Admon, U., Dariel, M.P., Grunbaum, E., and Lodder, J.C., J. Appl. Phys., 1987, vol. 62, pp. 1943–1947.
  8. Myung, N.V., Park, D.Y., Yoo, B.Y., and Sumodjo, P.T.A., J. Magn. Magn. Mater., 2003, vol. 265, pp. 189–198.
  9. Yang, H.H., Myung, N.V., Lee, J., Park, D.Y., Yoo, B.Y., Schwartz, M., Nobe, K., and Judy, J.W., Sens Actuators A, 2002, vol. 97, pp. 88–97.
  10. Sulitanu, N., J. Magn. Magn. Mater., 2001, vol. 231, pp. 85–93.
  11. Nguyen, N.T., Huang, X.Y., and Chuan, T.K., J. Fluids Eng., 2002, vol. 124, pp. 384–392.
  12. Ho, C.M. and Tai, Y.C., Annu. Rev. Fluid. Mech., 1998, vol. 30, pp. 579–612.
  13. Muh-Wang, L., Hui-Ting, Y., and Tsung-Eong, H., J. Electron. Mater., 2006, vol. 35, pp. 1593–1599.
  14. Brenner, A., Electrodeposition of Alloys, New York: Academic Press, 1963.
  15. Galikova, Z., Chovancova, M., and Danielik, V., Chem. Pap.-Chem. Zvesti, 2006, vol. 60, pp. 353–359.
  16. Eliaz, N. and Gileadi, E., Modern Aspects of Electrochemistry, 2006, vol. 41, pp. 191–301.
  17. Tsyntsaru, N., Cesiulis, H., Bobanova, J., Croitoru, D., Dikusar, A., and Celis, J.P., Proc. Int. Conf. Balttrib, 2009, pp. 259–264.
  18. Hyde, M.E. and Compton R.G., J. Electroanal. Chem., 2002, vol. 531, pp. 19–24.
  19. Hamid, Z.A., Mater. Lett., 2003, vol. 57, pp. 2558–2564.
  20. Ramazani, A., Almasi Kashi, M., Alikhani, M., and Erfanifam, S., Mater. Chem. Phys., 2008, vol. 112, pp. 285–289.
  21. Bade, K., Proc. 4 International Symposium on Magnetic Materials, Processes and Devices, The Electrochemical Society, 1996, vols. 95–18, pp. 697–708.
  22. Tsyntsaru, N., Silkin, S., Cesiulis, H., Guerrero, M., Pellicer, E., and Sort, J., Electrochim. Acta, 2016, vol. 188, pp. 589–601.
  23. Tsyntsaru, N., Cesiulis, H., Budreika, A., Ye, X., Juskenas, R., and Celis, J.-P., Surf. Coat. Techn., 2012, vol. 206, pp. 4262–4269.
  24. Tsyntsaru, N., Kaziukaitis, G., Yang, C., Cesiulis, H., Philipsen, H.G.G., Lelis, M., and Celis, J.-P., J. Solid State Electrochem., 2014, vol. 18, pp. 3057–3064.
  25. Hiller, E.M.K. and Robinson, M.J., Corr. Science, 2006, vol. 48, pp. 1019–1035.
  26. Maričic, A., Spasojevic, M., Rafailovic, L., Milovanovic, V., and Ribic-Zelenovic, L., Materials Science Forum, 2004, vol. 453, pp. 411–416.
  27. Aravinda, A., Muralidharan, V.S., and Mayanna, S.M., J. App. Electrochem., 2000, vol. 30, pp. 601–606.