Examples



mdbootstrap.com



 
Статья
2019

The Influence of Structure and Phase Composition of Titanium Alloy on Superplastic Deformation


I. V. RatochkaI. V. Ratochka, O. N. LykovaO. N. Lykova, I. P. MishinI. P. Mishin, E. V. NaydenkinE. V. Naydenkin
Российский физический журнал
https://doi.org/10.1007/s11182-018-1590-4
Abstract / Full Text

The paper presents research into the behavior of high-temperature plastic deformation of titanium alloy Ti–4.74 wt.% Al–5.57 wt.% Mo–5.04 wt.% V alloy (VT22) depending on its structure and phase composition. It is shown that the formation of fine-grain structure in this alloy is not a sufficient condition for realizing superplastic deformation. It is found that the formation of the ultra-fine grain structure in VT22 alloy leads to the temperature decrease down to 823 K at the beginning of plastic deformation. This allows achieving the percent elongation of the alloy specimens over 1300% within the temperature range of 973–1073 K and at a 6.9·10–3 s–1 initial tensile rate. The grain boundary sliding is considered to be the main deformation mechanism.

Author information
  • Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaI. V. Ratochka, O. N. Lykova, I. P. Mishin & E. V. Naydenkin
  • National Research Tomsk Polytechnic University, Tomsk, RussiaE. V. Naydenkin
References
  1. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Physical Metallurgy and Thermal Treatment of Non-Ferrous Metals and Alloys [in Russian], MISIS, Moscow (2005), 432 p.
  2. A. A. Il’in, B. A. Kolachev, and I. S. Pol'kin, Titanium Alloys. Composition, Structure, Properties: manual [in Russian], VILS–MATI, Moscow (2009), 520 p.
  3. E. V. Naydenkin, I. V. Ratochka, and G. P. Grabovetskaya, Mater. Sci. Forum, 667–669, 1183–1188 (2011).
  4. O. A. Kaibyshev, Superplasticity of Industrial Alloys [in Russian], Metallurgiya, Moscow (1984), 264 p.
  5. T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity of Metals and Ceramics, Cambridge University Press, Cambridge (1997).
  6. O. A. Kaibyshev and F. Z. Utyashev, Superplasticity, Structure Refinement and Treatment of Hard-To-Deform Alloys [in Russian], Nauka, Moscow (2002), 438 p.
  7. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain-Boundary Diffusion and Properties of Nanostructured Materials [in Russian], Nauka, Novosibirsk (2001), 232 p.
  8. R. Z. Valiev and I. V. Aleksandrov, Volume Nanostructured Metallic Materials, Akademkniga, Moscow (2007), 398 p.
  9. A. P. Zhilyaev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials, Woodhead Publishing Ltd., (2011), 328 p.
  10. V. E. Egorushkin and V. E. Panin, Phys. Mesomech., 20, No. 1, 5–13 (2017).
  11. E. Alabort, P. Kontis, D. Barbar, et al., Acta Mater., 105, 449–463 (2016).
  12. H. Matsumoto, K. Yoshida, S-H. Lee, et al., Mater. Lett., 98, 209–212 (2013).
  13. E. V. Naydenkin, I. V. Ratochka, I. P. Mishin, et al., J. Mater. Sci., 52, No. 8, 4164–4171 (2017).
  14. L. A. Elagina, B. F. Brailovskaya, and B. A. Kapitonov, Tsvetnye metally, No. 2, 63–66 (1979).
  15. S. V. Zherebtsov, S. A. Kostyuchenko, E. A., Kudryavtsev, and G. A. Salishchev, Vestnik UGATU, 16, No. 7(52), 25–29 (2012).
  16. I. V. Ratochka and O. N. Lykova, Perspektivnye materialy, No. 12, 65–71 (2016).
  17. M. Ashida, P. Chen, H. Doi, et al., Mater. Sci. Eng. A, 640, 449–453 (2015).
  18. V. A. Vinokurov, I. V. Ratochka, E. V. Naydenkin, I. P. Mishin, and N. V. Rozhintseva, RF Patent No. 2388566 (May 10, 2010).
  19. E. V. Naydenkin, I. V. Ratochka, I. P. Mishin, and O. N. Lykova, Russ. Phys. J., 58, No. 8, 1068–1073 (2015).