Examples



mdbootstrap.com



 
Статья
2017

The method of integral transformations in inverse problems of anomalous diffusion


A. N. BondarenkoA. N. Bondarenko, T. V. BuguevaT. V. Bugueva, D. S. IvashchenkoD. S. Ivashchenko
Русская математика
https://doi.org/10.3103/S1066369X1703001X
Abstract / Full Text

We consider an initial-boundary value problem for a multidimensional fractional diffusion equation. The aim of the paper is to construct an integral transformation which establishes a biunique correspondence between the fractional diffusion equation and the hyperbolic one. This transformation can be used for proving the uniqueness of the solution of the inverse problem for the fractional diffusion equation.

Author information
  • Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, pr. Ak. Koptyuga 4, Novosibirsk, 630090, RussiaA. N. Bondarenko & T. V. Bugueva
  • Novosibirsk State University, ul. Pirogova str. 2, Novosibirsk, 630090, RussiaT. V. Bugueva
  • RN-UfaNIPIneft, LLC, ul. Bekhtereva 3, Ufa, 450103, RussiaD. S. Ivashchenko
References
  1. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).
  2. Podlubny, I. Fractional Differential Equations (CA: Academic Press, San Diego, 1999).
  3. Nigmatullin, R. R., “Fractional Integral and Its Physical Interpretation”, Theor.Math. Phys. 90, No. 3, 242–251 (1992)
  4. Metzler, R. and Klafter, J. “The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach”, Phys. Rep. 339, No. 1, 1–77 (2000).
  5. Montroll, E.W. andWeiss, G. H. “RandomWalks on Lattices”. II, J. Math. Phys. 6, No. 2, 167–178 (1965).
  6. Barkai, E., Metzler, R., and Klafter, M. “From Continuous Time Random Walks to the Fractional Fokker–Plank Equation”, Phys. Rev. E 61, No. 1, 132–138 (2000).
  7. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., and Paradisi, P. “Discrete Random Walk Models for Space-Time Fractional Diffusion”, Chem. Phys. 284, No. 1, 521–541 (2002).
  8. Gorenflo, R., Vivoli, A., and Mainardi, F. “Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion”, Nonlinear Dynam. 38, Nos. 1–4, 101–116 (2004).
  9. Bondarenko, A. N., Ivaschenko, D. S. “Generalized Sommerfeld Problem for Time Fractional Diffusion Equation: Analytical and Numerical Approach”, J. Inv. Ill-PosedProblems 17, No. 4, 321–335 (2009).
  10. Bondarenko, A. N., Ivaschenko, D. S. “NumericalMethods for Solving Inverse Problems for Time Fractional Diffusion Equation with Variable Coefficient”, J. Inv. Ill-PosedProblems 17, No. 5, 419–440 (2009).
  11. Cheng, J., Nakagawa, J., Yamamoto, M., and Yamazaki, T. “Uniqueness in an Inverse Problem for One-Dimensional Fractional Diffusion Equation”, InverseProblems 25, No. 11, 115002, 16 pp. (2009).
  12. Vladimirov, V. S. Equations of Mathematical Physics (Marcel Dekker, inc., New York, 1971).
  13. Bragg, L. R., Dettman, J. W. “An Operator Calculus for Related Partial Differential Equations”, J. Math. Anal. Appl. 22, No. 1, 261–271 (1968).
  14. Bragg, L. R., Dettman, J. W. “A Class of Related Dirichlet and Initial Value Problems”, Proc. Amer. Math. Soc. 21, No. 1, 50–56 (1969).
  15. Bragg, L. R., Dettman, J. W. “Related Problems in Partial Differential Equations”, Bull. Amer. Math. Soc. 74, No. 2, 575–378 (1968).
  16. Lavrent’ev, M.M., Reznitskaya, K. G., Yakhno, V. G. One-Dimensional Inverse Problems of Mathematical Physics (AMS Translations, 1986, Series 2, 130).
  17. Wyss, M. M., Wyss, W. “Evolution, its Fractional Extension and Generalization”, http://arxiv.org/abs/math-ph/9912023.
  18. Gorenflo, R., Iskenderov, A., and Luchko, Y. “Mapping Between Solutions of Fractional Diffusion-Wave Equations”, http://public.beuth-hochschule.de/ luchko/papers/fcaa3.PDF.
  19. Romanov, V. G. Inverse Problems of Mathematical Physics (VNU Science Press, Utrecht, The Netherlands, 1987).