Examples



mdbootstrap.com



 
Статья
2020

Influence of Inert Particles on the Physical Regularities of Bulk Synthesis of Composite


N. V. BukrinaN. V. Bukrina, A. G. KnyazevaA. G. Knyazeva
Российский физический журнал
https://doi.org/10.1007/s11182-020-02163-8
Abstract / Full Text

The physical phenomena accompanying the bulk synthesis of a composite from pure elements with addition of inert particles are analyzed. Among the main reasons, a change in thermophysical properties (heat capacity and thermal conductivity coefficient), as well as a decrease in the total heat release in a chemical reaction, are highlighted. The complex of chemical reactions is described by a total reaction with effective formal kinetic parameters. The kinetic law takes into account strong inhibition of the reaction by the layer of the synthesized product which prevents the interaction of the reagents. The effective thermophysical properties of the mixture in the reactor depend on the properties of the components and the volume fraction of inert particles. It is shown that the addition of refractory particles to the mixture leads to a slowdown in the stage of the ignition process and a more complete conversion due to the heat stored in the inert particles.

Author information
  • Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaN. V. Bukrina & A. G. Knyazeva
References
  1. E. A. Levashov, A. S. Mukasyan, A. S. Rogachev, et al., Int. Mater. Rev., 62, No. 4, 203–239 (2016).
  2. A. G. Knyazeva and N. Travitskii, Russ. Phys. J., 62, No. 8, 1495–1503 (2019).
  3. O. V. Lapshin, E. N. Boyangin, and V. E. Ovcharenko, Combust. Explos. Shock Waves, 41, No. 1, 64–70 (2005).
  4. Mohammad Bagher Rahaei, Adv. Powder Technol., 30, 1025–1033 (2019).
  5. X. Zhu, T. Zhang, D. Marchant, et al, J. Eur. Ceram. Soc., 30, No. 13, 2781– 2790 (2010).
  6. A. A. Shokati, N. Parvin, N. Sabzianpour, et al., J. Alloys Compd., 549, 141– 146 (2013).
  7. O. V. Lapshin and V. E. Ovcharenko, Combust Explos. Shock Waves, 34, 26–28 (1998).
  8. V. G. Prokof’ev and V. K. Smolyakov, Combust. Explos. Shock Waves, 54, No. 1, 24-29 (2018).
  9. Rajendra K. Bordia, Suk-Joong L. Kang, and Eugene A. Olevsky, J. Am. Ceram. Soc., 100, Iss. 6, 2314–2352 (2017).
  10. Johannes Hotzer, Marco Seiz, Michael Kellner, et al., Acta Mater., 164, 184–195 (2019).
  11. Sudipta Biswas, Daniel Schwen, Hao Wang, et al., Computation. Mater. Sci., 148, 307–319 (2018).
  12. Rui-jie Zhang, Zhong-wei Chen, Wei Fang, et al., Trans. Nonferrous Metals Soc. China, 24, Iss. 3, 783–789 (2014).
  13. A. A. Chashchina and A. G. Knyazeva, Combust. Explos. Shock Waves, 40, No. 4, 432-437 (2004).
  14. N. Bukrina and A. Knyazeva, Int. J. Heat and Mass Transfer, 152, 119553 (2020). https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2020.119553.
  15. N. V. Bukrina and A. G. Knyazeva, High Temp. Mater. Proc., 24, No. 1, 65-79 (2020). https://doi.org/10.1615/HighTempMatProc.2020033859.
  16. V. E. Ovcharenko et al., Mater. Sci. Forum. Mater. and Proc. Technol., 906, 95–100 (2017).
  17. N. V. Bukrina, A. G. Knyazeva, and V. E. Ovcharenko, Interdisciplinary Problems of Additive Technologies, Proceed. of the III All-Russia Scientific Seminar with International Participation [Electron. text data.], Izd.Tomsk Polytechnic University, Tomsk (2018).
  18. A. Bakinovskii, A. G. Knyazeva, M. G. Krinitcyn, et al., Int. J. Self-Propag. High-Temp. Synth., 28, No. 4, 245–255 (2019).