Examples



mdbootstrap.com



 
Статья
2021

Synthesis of Triazolylisatins Glycoconjugates and Some Ammonium Hydrazones on Their Basis


A. V. BogdanovA. V. Bogdanov, O. V. AndreevaO. V. Andreeva, M. G. BelenokM. G. Belenok, A. D. VoloshinaA. D. Voloshina, K. I. EnikeevaK. I. Enikeeva, A. V. SamorodovA. V. Samorodov, V. F. MironovV. F. Mironov
Российский журнал общей химии
https://doi.org/10.1134/S1070363221070045
Abstract / Full Text

The click reaction of propargylisatins with some azido-sugars was used to synthesize new isatin derivatives, in which the carbohydrate residue is linked to the 2,3-dioxindole scaffold via the 1,2,3-triazole ring. A number of water-soluble acylhydrazones with various structure of cationic fragment were obtained on their basis. It was shown that the newly obtained compounds do not exhibit hemotoxic action and have a significant antiaggregatory and anticoagulant activity at the level of reference drugs such as acetylsalicylic acid and pentoxifylline.

Author information
  • A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”, 420088, Kazan, RussiaA. V. Bogdanov, O. V. Andreeva, M. G. Belenok, A. D. Voloshina & V. F. Mironov
  • Bashkir State Medical University, 450000, Ufa, RussiaK. I. Enikeeva & A. V. Samorodov
References
  1. Design of Hybrid Molecules for Drug Development, Decker, M., Ed., Amsterdam: Elsevier, 2017.
  2. Bosquesi, P.L., Ferreira Melo, Th.R., Vizioli, E.O., dos Santos, J.L., and Chung, M.Ch., Pharmaceuticals, 2011, vol. 4, p. 1450. https://doi.org/10.3390/ph4111450
  3. Berube, G., Expert Opin. Drug Discov., 2016, vol. 11, p. 281. https://doi.org/10.1517/17460441.2016.1135125
  4. Viegas-Junior, C., Danuello, A., da Silva Bolzani, V., Barreiro, E.J., and Fraga, C.A.M., Curr. Med. Chem., 2007, vol. 14, p. 1829. https://doi.org/10.2174/092986707781058805
  5. Brandao, P., Marques, C., Burke, A.J., and Pineiro, M., Eur. J. Med. Chem., 2021, vol. 211, p. 113102. https://doi.org/10.1016/j.ejmech.2020.113102
  6. Brandao, P., Marques, C., Carreiro, E.P., Pineiro, M., and Burke, A.J., Chem. Rec., 2021, vol. 21, p. 1. https://doi.org/10.1002/tcr.202000167
  7. Xu, Zh., Zhang, Sh., Gao, Ch., Fan, J., Zhao, F., Lv, Z.-Sh., and Feng, L.-Sh., Chinese Chem. Lett., 2017, vol. 28, p. 159. https://doi.org/10.1016/j.cclet.2016.07.032
  8. Zhang, Y.-Zh., Du, H.-Zh., Liu, H.-L., He, Q.-S., and Xu, Z., Arch. Pharm. Chem. Life Sci., 2020, vol. 353, p. e1900299. https://doi.org/10.1002/ardp.201900299
  9. Ding, Zh., Zhou, M., and Zeng, Ch., Arch. Pharm. Chem. Life Sci., 2020, vol. 353, p. e1900367. https://doi.org/10.1002/ardp.201900367
  10. Xu, Zh., Zhang, Sh., Gao, Ch., Fan, J., Zhao, F., Lv, Z.-Sh., and Feng, L.-Sh., Chinese Сhem. Lett., 2017, vol. 28, p. 159. https://doi.org/10.1016/j.cclet.2016.07.032
  11. Guo, H. and Diao, Q.-P., Curr. Top. Med. Chem., 2020, vol. 20, p. 1499. https://doi.org/10.2174/1568026620666200310124416
  12. Jiang, D., Wang, G.-Q., Liu, X., Zhang, Zh., Feng, L.-Sh., and Liu, M.-L., J. Heterocycl. Chem., 2018, vol. 55, p. 1263. https://doi.org/10.1002/jhet.3189
  13. Dhameja, M. and Gupta, P., Eur. J. Med. Chem., 2019, vol. 176, p. 343. https://doi.org/10.1016/j.ejmech.2019.04.025
  14. Xu, Zh., Zhao, Sh.-J., and Liu, Y., Eur. J. Med. Chem., 2019, vol. 183, p. 111700. https://doi.org/10.1016/j.ejmech.2019.111700
  15. Surur, A.Sh., Huluka, S.A., Mitku, M.L., and Asres, K., Drug Des. Dev. Ther., 2020, vol. 14, p. 4855. https://doi.org/10.2147/DDDT.S278588
  16. Hou, Y., Shang, C., Wang, H., and Yun, J., Arch. Pharm. Chem. Life. Sci., 2020, vol. 353, p. 1900272. https://doi.org/10.1002/ardp.201900272
  17. Song, F., Li, Zh., Bian, Yu., Huo, X., Fang, Ju., Shao, L., and Zhou, M., Arch. Pharm., 2020, vol. 353, p. e2000143. https://doi.org/10.1002/ardp.202000143
  18. He, X.-P., Zeng, Y.-L., Zang, Y., Li, J., Field, R.A., and Chen, G.-R., Carbohydrate Res., 2016, vol. 429, p. 1. https://doi.org/10.1016/j.carres.2016.03.022
  19. Jefferis, R., Nature Rev. Drug Discov., 2009, vol. 8, p. 226. https://doi.org/10.1038/nrd2804
  20. Jefferis, R., mAbs., 2009, vol. 5, p. 638. https://doi.org/10.4161/mabs.25631
  21. Bednarska, N.G., Wren, B.W., and Willcocks, S.J., Drug Discov. Today, 2017, vol. 22, p. 919. https://doi.org/10.1016/j.drudis.2017.02.001
  22. Moradi, Sh.V., Hussein, W.M., Varamini, P., Simerska, P., and Toth, I., Chem. Sci., 2016, vol. 7, p. 2492. https://doi.org/10.1039/c5sc04392a
  23. Andreeva, O.V., Belenok, M.G., Saifina, L.F., Shulaeva, M.M., Dobrynin, A.B., Sharipova, R.R., Voloshina, A.D., Saifina, A.F., Gubaidullin, A.T., Khairutdinov, B.I., Zuev, Y.F., Semenov, V.E., and Kataev, V.E., Tetrahedron Lett., 2019, vol. 60, p. 151276. https://doi.org/10.1016/j.tetlet.2019.151276
  24. Andreeva, O.V., Garifullin, B.F., Zarubaev, V.V., Slita, A.V., Yesaulkova, I.L., Saifina, L.F., Shulaeva, M.M., Belenok, M.G., Semenov, V.E., and Kataev, V.E., Mol. Divers., 2021, vol. 25, p. 473. https://doi.org/10.1007/s1103
  25. Andreeva, O.V., Garifullin, B.F., Sharipova, R.R., Strobykina, I.Yu., Sapunova, A.S., Voloshina, A.D., Belenok, M.G., Dobrynin, A.B., Khabibulina, L.R., and Kataev, V.E., J. Nat. Prod., 2020, vol. 83, p. 2367. https://doi.org/10.1021/acs.jnatprod.0c00134
  26. Andreeva, O.V., Saifina, L.F., Belenok, M.G., Semenov, V.E., and Kataev, V.E., Russ. J. Org. Chem., 2021, vol. 57, p. 292. https://doi.org/10.1134/S1070428021020226
  27. Thakur, R.K., Joshi, P., Baranwal, P., Sharma, G., Shukla, S.K., Tripathi, R., and Tripathi, R.P., Eur. J. Med. Chem., 2018, vol. 155, p. 764. https://doi.org/10.1016/j.ejmech.2018.06.042
  28. Blazevic, I., Montaut, S., Burcul, F., Olsen, C.E., Burow, M., Rollin, P., and Agerbirk, N., Phytochemistry, 2020, vol. 169, p. 112100. https://doi.org/10.1016/j.phytochem.2019.112100
  29. Messaoudi, S., Sancelme, M., Polard-Housset, V., Aboab, B., Moreau, P., and Prudhomme, M., Eur. J. Med. Chem., 2004, vol. 39, p. 453. https://doi.org/10.1016/j.ejmech.2004.01.001
  30. Kleeblatt, D., Cordes, Ch.A., Lebrenz, Ph., Hein, M., Feist, H., Matin, A., Raza, R., Iqbal, J., Munshi, O., Rahman, Q., Villinger, A., and Langer, P., RSC Adv., 2014, vol. 4, p. 22828. https://doi.org/10.1039/c4ra02627f
  31. Kleeblatt, D., Becker, M., Plotz, M., Schonherr, M., Villinger, A., Hein, M., Eberle, J., Kunz, M., Rahman, Q., and Langer, P., RSC Adv., 2015, vol. 5, p. 20769. https://doi.org/10.1039/c4ra14301a
  32. Kassab, Sh.E., Hegazy, G.H., Eid, N.M., Amin, K.M., and El-Gendy, A.A., Nucleos. Nucleot. Nucl. Acids, 2010, vol. 29, p. 72. https://doi.org/10.1080/15257770903459267
  33. Thakur, R.K., Joshi, P., Upadhyaya, K., Singh, K., Sharma, G., Shukla, S.K., Tripathi, R., and Tripathi, R.P., Eur. J. Med. Chem., 2019, vol. 162, p. 448. https://doi.org/10.1016/j.ejmech.2018.11.008
  34. Silva, M., Goncalves, J.C.O., Oliveira-Campos, A.M.F., Rodrigues, L.M., and Esteves, A.P., Synth. Commun., 2013, vol. 43, p. 1432. https://doi.org/10.1080/00397911.2011.637655
  35. Bogdanov, A.V., Zaripova, I.F., Mustafina, L.K., Voloshina, A.D., Sapunova, A.S., Kulik, N.V., and Mironov, V.F., Russ. J. Gen. Chem., 2019, vol. 89, p. 1368. https://doi.org/10.1134/S107036321907003X
  36. Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Strobykina, A.S., Kulik, N.V., Bukharov, S.V., and Mironov, V.F., Russ. J. Gen. Chem., 2018, vol. 88, p. 57. https://doi.org/10.1134/S1070363218010097
  37. Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Sapunova, A.S., Kulik, N.V., Voronina, Ju.K., and Mironov, V.F., Chem. Biodiversity, 2018, vol. 15, p. 1800088. https://doi.org/10.1002/cbdv.201800088
  38. Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Sapunova, A.S., Kulik, N.V., Bukharov, S.V., Voronina, Ju.K., Vandyukov, A.E., and Mironov, V.F., ChemistrySelect, 2019, vol. 4, p. 6162. https://doi.org/10.1002/slct.201901708
  39. Pashirova, T.N., Bogdanov, A.V., Zaripova, I.F., Burilova, E.A., Vandyukov, A.E., Sapunova, A.S., Vandyukova, I.I., Voloshina, A.D., Mironov, V.F., and Zakharova, L.Ya., J. Mol. Liq., 2019, vol. 290, p. 111220. https://doi.org/10.1016/j.molliq.2019.111220
  40. Bogdanov, A.V., Kadomtseva, M.E., Bukharov, S.V., Voloshina, A.D., and Mironov, V.F., Russ. J. Org. Chem., 2020, vol. 56, p. 555. https://doi.org/10.1134/S107042802003032X
  41. Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Strobykina, A.S., Kulik, N.V., Bukharov, S.V., Voronina, Ju.K., Khamatgalimov, A.R., and Mironov, V.F., Monatsh. Chem., 2018, vol. 149, p. 111. https://doi.org/10.1007/s00706-017-2049-y
  42. Bogdanov, A.V., Voloshina, A.D., Khamatgalimov, A.R., Terekhova, N.V., and Mironov, V.F., Doklady Chem., 2020, vol. 494, Pt 1, p. 136. https://doi.org/10.1134/S0012500820090013
  43. Kitaev, Yu.P., Buzykin, B.I., and Troepol’skaya, T.V., Russ. Chem. Rev., 1970, vol. 39, p. 441. https://doi.org/10.1070/RC1970v039n06ABEH001999
  44. Greener, M., EMBO Rep., 2005, vol. 6, p. 202. https://doi.org/10.1038/sj.embor.7400353
  45. Schultze, A.E., Walker, D.B., Turk, J.R., Tarrant, J.M., Brooks, M.B., and Pettit, S.D., Toxicol. Pathol., 2013, vol. 41, p. 445. https://doi.org/10.1177/019262331246092