Статья
2022

X-Ray Contrast Magnetic Diagnostic Tool Based on a Three-Component Nanosystem


A. A. Gvozdenko A. A. Gvozdenko , A. V. Blinov A. V. Blinov , K. S. Slyadneva K. S. Slyadneva , A. A. Blinova A. A. Blinova , A. B. Golik A. B. Golik , D. G. Maglakelidze D. G. Maglakelidze
Российский журнал общей химии
https://doi.org/10.1134/S1070363222060305
Abstract / Full Text

Currently, improving the methods of early diagnosis of oncological diseases is an urgent task. With the development of science, there are more and more ways to solve it. The most important at the moment are the methods of magnetic resonance imaging and computed tomography, which allow you to visualize neoplasms less than 1 cm in size. To increase the effectiveness of these methods, X-ray contrast and magnetic resonance contrast agents are used to more accurately visualize and identify various neoplasms, so the development of new X-ray contrast and magnetic resonance contrast agents is a very important direction. The purpose of this work was to develop a X-ray contrast magnetic diagnostic tool based on a three-component Fe3O4–Au–SiO2 nanosystem. With the help of neural network modeling, the synthesis process of the Fe3O4–Au–SiO2 nanosystem was optimized. Optimal conditions for the synthesis of a three-component nanosystem with a diameter of less than 150 nm: V(Fe3O4) = 0.0012–0.0015 mol, V(HAuCl4) = 25–35 cm3, C(Na3C6H5O7∙5.5H2O) = 0.08–0.011 mol/dm3. Based on the results of X-ray phase analysis, it was found that the optimized sample of the three-component nanosystem contains crystalline phases of double iron oxide (Fe3O4), gold (Au) and an amorphous phase of silicon dioxide (SiO2). The results of IR spectroscopy confirmed the formation of a three-component system Fe3O4–Au–SiO2. The results of the X-ray density study showed that different layers of the three-component Fe3O4–Au–SiO2 nanosystem have different X-ray densities: a nucleus consisting of Fe3O4 nanoparticles has an X-ray density from 3000 to 4000 HU depending on the size of the nucleus; the layer formed by Au nanoparticles have an X-ray density of 9 000 to 10 000 HU depending on the size of the layer; the silica layer has an X-ray density of 100 HU to 950 HU. The research of the magnetic properties allowed us to establish a nonlinear decrease in the saturation magnetization from 0.17 to 0.01 kA/m, and the magnetic susceptibility from 0.0026 rel. units to 0.0002 rel. units when the ratio of the components of the Fe3O4–Au–SiO2 nanosystem changes.

Author information
  • Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North-Caucasus Federal University, 355017, Stavropol, Russia

    A. A. Gvozdenko, A. V. Blinov, K. S. Slyadneva, A. A. Blinova, A. B. Golik & D. G. Maglakelidze

References
  1. Kaprin, A.D., Starinsky, V.V., and Petrova, G.V., The Sate of Cancer Care for the Population of Russia in 2016, 2017, p. 236.
  2. Kaprin, A.D., Starinsky, V.V., and Petrova, G.V., The Sate of Cancer Care for the Population of Russia in 2017, 2018, p. 236. https://doi.org/10.17116/onkolog2019801132
  3. Przhedetskaya, N.V. and Przhedetsky, Y.V., Bull. Rostov State University of Economics, 2020, no. 1(69), pp. 51–55.
  4. Vikulova, Y.V., Radiat. Diagnost. Therapy, 2012, no. 2(3), pp. 40–43.
  5. Androsyuk, K.L. and Plavskaya, O.K., Prognostic Value of Primary Tumor Visualization during Radiation Therapy of Laryngeal Cancer, 2013, pp. 18–19.
  6. Morris, E.D., Ghanem, A.I., Pantelic, M.V., Walker, E.M., Han, X., and Glide-Hurst, C.K., Int. J. Radiat. Oncol. Biol. Physics, 2019, vol. 103, no. 4, pp. 985–993.
  7. Krylova, A.I., Sotnikova, E.A., and Golbits, A.B., Pediatrician, 2016, vol. 7, no. 1. https://doi.org/10.17816/PED71111-119
  8. Kit, O.I., Zakharova, N.P., Salatov, R.N., Ausheva, T.V., and Andreiko, E.A., A Method for Diagnosing Soft Tissue Tumors, 2012, no. 2465825.
  9. Hu, H., Front. Chem., 2020, vol. 8. https://doi.org/10.3389/fchem.2020.00203
  10. Schmidt, G., Reiser, M., and Baur-Melnyk, A., Seminars in Musculoskeletal Radiology, 2009, no. 13(2), pp. 120–133. https://doi.org/10.1055/s-0029-1220883
  11. Kather, J.N., Weidner, A., Attenberger, U., Bukschat, Y., Weis, C.-A., Weis, M., Schad, L.R., and Zöllner, F.G., Sci. Rep., 2017, vol. 7, no. 1, pp. 1–11. https://doi.org/10.1038/srep41107
  12. Edelman, R.R., Radiology, 2014, no. 273(2S), pp. 181–200. https://doi.org/10.1148/radiol.14140706
  13. Cyran, C.C., Paprottka, P.M., and Eisenblätter, M., Radiat. Oncol., 2014, vol. 9, no. 1, pp. 1–15. https://doi.org/10.1186/1748-717X-9-3
  14. .Bychkovsky, P.M., Russ. Biother. J., 2011, vol. 10, no. 3.
  15. Agafonov, D.A., Abstract of Papers, All-Russian Student Sci. and Practical Conf. “Topical Issues of Pharmaceutical and Natural Sciences,” 2020, pp. 162–164.
  16. Giasuddin, A.S.M., Jhuma, K.A., and Haq, A.M.M., Bangladesh J. Med. Biochem., 2012, vol. 5, no. 2, pp. 56–60.
  17. Tian, L., Sci. Rep., 2017, vol. 7, no. 1, pp. 1–10.
  18. Bao, Y., Sherwood, J.A., and Sun, Z., J. Mater. Chem. C, 2018, vol. 6, no. 6, pp. 1280–1290.
  19. Shen, Z., Chen, T., Ma, X., Ren, W., Zhou, Z., Zhu, G., Zhang, A., Liu, Y., Song, J., Li, Z., Ruan, H., Fan, W., Lin, L., Munasinghe, J., Chen, X., and Wu, A., ACS Nano, 2017, vol. 11, no. 11, pp. 10992–11004. https://doi.org/10.1021/acsnano.7b04924
  20. Wahsner, J., Gale, E.M., Rodríguez-Rodríguez, A., and Caravan, P., Chem. Rev., 2018, no. 119(2), pp. 957–1057. https://doi.org/10.1021/acs.chemrev.8b00363
  21. Taukulis, R., Widdrat, M., Kumari, M., Heinke, D., Rumpler, M., Tompa, E., Uebe, R., Kraupner, A., Cebers, A., Sculer, D., Posfai, M., Hirt, A.M., and Faivre, D., Magnetohydrodynamics, 2015, vol. 51, no. 4, pp. 721–747.
  22. Bogdanov, Jr.A. and Mazzanti, M.L., Seminars in Oncolog., 2011, vol. 38(1), pp. 42–54. https://doi.org/10.1053/j.seminoncol.2010.11.002
  23. Nosrati, H., Salehiabar, M., Fridoni, M., Abdollahifar, M.-A., Manjili, H.K., Davaran, S., and Danafar, H., Sci. Rep., 2019, vol. 9, no. 1, pp. 1–10. https://doi.org/10.1038/s41598-019-43650-4
  24. Blinov, A.V., Physico-Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 2019, no. 11, pp. 298–306.
  25. Blinov, A.V., Blinova, A.A., Kravtsov, A.A., Gvozdenko, A.A., Kobina, A.V., and Momot, E.V., AIP Conf. Proc.: XV International Scientific-Technical Conference “Dynamics of Technical Systems,” DTS 2019, Rostovon-Don, 11 September 13, 2019, p. 040011. https://doi.org/10.1063/1.5138420
  26. Gvozdenko, A.A., Blinov, A.V., Yasnaya, M.A., Golik, A.B., Raffa, V.V., Kramarenko, V.N., Maglakelidze, D.G., and Shevchenko, I.M., Physico-Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 2020, no. 12, pp. 394–404. https://doi.org/10.26456/pcascnn/2020.12.394
  27. Malinovsky, V.K., Solid State Phys., 2000, vol. 42, no. 1, pp. 62–68.
  28. Ilves, V.G., Zuev, M.G., Sokovnin, C.Yu., and Murzakaev, A.M., Solid State Phys., 2015, vol. 57, no. 12, pp. 2439–2445.
  29. Karamipour, S., Sadjadi, M.S., and Farhadyar, N., Spectrochim. Acta, A, 2015, vol. 148, pp. 146–155. https://doi.org/10.1016/j.saa.2015.03.078
  30. Wei, G., Shu, X., Zhang, Z., Luo, F., Liu, Y., Li, B., and Lu, X., J. Nuclear Mater., 2021, vol. 543, p. 152619. https://doi.org/10.1016/j.jnucmat.2020.152619
  31. Yastrebinskii, R.N., Bondarenko, G.G., and Pavlenko, A.V., Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 2, pp. 221–226. https://doi.org/10.1134/s2075113318020326