A Carbon Paste Electrode Modified by Graphene Oxide/Fe3O4@SiO2/Ionic Liquid Nanocomposite for Voltammetric Determination of Acetaminophen in the Presence of Tyrosine

 Hadi Beitollahi Hadi Beitollahi ,  Fariba Garkani Nejad Fariba Garkani Nejad
Российский электрохимический журнал
Abstract / Full Text

Herein, we introduce a novel modification process for carbon paste electrode by magnetic core–shell nanocomposite of graphene oxide/Fe3O4@SiO2 and n-hexyl-3-methylimidazolium hexafluoro phosphate as ionic liquid. Electrochemical features of this modified carbon paste electrode and its performance evaluation in simultaneous detection of acetaminophen and tyrosine via voltammetric oxidation was investigated. Moreover, diagnostic techniques including cyclic voltammetry, square wave voltammetry and chronoamperometry were applied in order to study the electrochemical oxidation behavior of this sensor toward acetaminophen. According to square wave voltammetry results, linear dynamic range between 1.0 × 10–6–1.0 × 10–3 M was observed for acetaminophen. The function of modified electrode in real samples containing acetaminophen and tyrosine was satisfactory.

Author information
  • Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

    Hadi Beitollahi &  Fariba Garkani Nejad

  1. Moghadam, Z., Ghoreishi, S.M., Behpour, M., and Motaghedifard, M., A highly sensitive nanostructure-based surface covalently modification of gold for electrochemical sensing of epinephrine in presence of uric acid and acetaminophen, J. Electrochem. Soc., 2013, vol. 160, p. H126.
  2. Cernat, A., Tertis, M., Sandulescu, R., Bedioui, F., Cristea, A., and Cristea, C., Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: a review, Anal. Chim. Acta, 2015, vol. 886, p. 16.
  3. Sharifian, S. and Nezamzadeh-Ejhieh, A., Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid, Mater. Sci. Eng. C, 2016, vol. 58, p. 510.
  4. Karimi-Maleh, H., Moazampour, M., Ahmar, H., Beitollahi, H., and Ensafi, A.A., A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan, Measurement, 2014, vol. 51, p. 91.
  5. Shahrokhian, S. and Asadian, E., Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode, Electrochim. Acta, 2010, vol. 55, p. 666.
  6. Chiavazza, E., Berto, S., Giacomino, A., Malandrino, M., Barolo, C., Prenesti, E., Vione, D., and Abollino, O., Electrocatalysis in the oxidation of acetaminophen with an electrochemically activated glassy carbon electrode, Electrochim. Acta, 2016, vol. 192, p. 139.
  7. Beitollahi, H. and Nekooei, S., Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine, Electroanalysis, 2016, vol. 28, p. 645.
  8. Bhakta, A.K., Mascarenhas, R.J., D’Souza, O.J., Satpati, A.K., Detriche, S., Mekhalif, Z., and Dalhalle, J., Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode as an electrochemical sensor for the simultaneous determination of uric acid in the presence of ascorbic acid, dopamine and L-tyrosine, Mater. Sci. Eng. C, 2015, vol. 57, p. 328.
  9. Brillians-Revin, S. and Abraham-John, S., Selective determination of L-tyrosine in the presence of ascorbic and uric acids at physiological pH using the electropolymerized film of 3-amino-5-mercapto-1,2,4-triazole, Sens. Actuat. B-Chem., 2012, vol. 161, p. 1059.
  10. Mahbubur-Rahman, M., Siraj-Lopa, N., Kim, K., and Lee, J., Selective detection of L-tyrosine in the presence of ascorbic acid, dopamine, and uric acid at poly(thionine)-modified glassy carbon electrode, J. Electroanal. Chem., 2015, vol. 754, p. 87.
  11. Taei, M. and Ramazani, G., Simultaneous determination of norepinephrine, acetaminophen and tyrosine by differential pulse voltammetry using Au-nanoparticles/poly(2-amino-2-hydroxymethyl-propane-1,3-diol) film modified glassy carbon electrode, Colloids Surf. B, 2014, vol. 123, p. 23.
  12. Tahernejad-Javazmi, F., Shabani-Nooshabadi, M., and Karimi-Maleh, H., Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte, Talanta, 2018, vol. 176, p. 208.
  13. Meyer, J.S., Welch, K.M.A., and Deshmuckh, V.D., Neurotransmitter precursor amino acids in the treatment of multi-infarct dementia and Alzheimer’s disease, J. Am. Geriatr. Soc., 1977, vol. 25, p. 289.
  14. Kemmegne-Mbouguen, J.C., Toma, H.E., Araki, K., Constantino, V.R., Ngameni, E., and Angnes, L., Simultaneous determination of acetaminophen and tyrosine using a glassy carbon electrode modified with a tetraruthenated cobalt(II) porphyrin intercalated into a smectite clay, Microchim. Acta, 2016, vol. 183, p. 3243.
  15. Sirajuddin, A.R., Khaskheli, A., Shah, M.I., Bhanger, A., and Mahesar, S.N., Simpler spectrophotometric assay of paracetamol in tablets and urine samples, Spectrochem. Acta A, 2007, vol. 68, p. 747.
  16. Gioia, M.G., Andreatta, P., Boschetti, S., and Gatti, R., Development and validation of a liquid chromatographic method for the determination of ascorbic acid, dehydroascorbic acid and acetaminophen in pharmaceuticals, J. Pharm. Biomed. Anal., 2008, vol. 48, p. 331.
  17. Wang, F., Wu, K.Z., Qing, Y., and Ci, Y.X., Spectrofluorimetric determination of the substrates based on the fluorescence formation with the peroxidase-like conjugates of hemie with proteins, Anal. Lett., 1992, vol. 25, p. 1469.
  18. Huang, Y., Jiang, X., Wang, W., Duan, J., and Chen, G., Separation and determination of L-tyrosine and its metabolites by capillary zone electrophoresis with a wall-jet amperometric detection, Talanta, 2006, vol. 70, p. 1157.
  19. Li, X. and Xu, G., Simultaneous determination of ranitidine and metronidazole in pharmaceutical formulations at poly(chromotrope 2B) modified activated glassy carbon electrodes, J. Food. Drug Anal., 2014, vol. 22, p. 345.
  20. Beitollahi, H., Ghofrani Ivari, S., and Torkzadeh-Mahani, M., Application of antibody nanogold-ionic liquid-carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone, Biosens. Bioelectron., 2018, vol. 110, p. 97.
  21. Fouladgar, M., Application of ZnO nanoparticle/ion liquid modified carbon paste electrode for determination of isoproterenol in pharmaceutical and biological samples, J. Electrochem. Soc., 2016, vol. 163, p. B38.
  22. Beitollahi, H. and Sheikhshoaie, I., Electrochemical behavior of carbon nanotube/Mn(III) salen doped carbon paste electrode and its application for sensitive determination of N-acetylcysteine in the presence of folic acid, Int. J. Electrochem. Sci., 2012, vol. 7, p. 7684.
  23. Ganjali, M.R., Khoshsafar, H., Shirzadmehi, A., Javanbakht, M., and Faridbod, F., Improvement of carbon paste ion selective electrode response by using room temperature ionic liquids (RTILs) and multi-walled carbon nanotubes (MWCNTs), Int. J. Electrochem. Sci., 2009, vol. 4, p. 435.
  24. Beitollahi, H., Nekooei, S., and Torkzadeh-Mahani, M., Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste electrode, Talanta, 2018, vol. 188, p. 701.
  25. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3, 4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.
  26. Lu, X.C., Song, L., Ding, T.T., Lin, Y.L., and Xu, C.X., CuS–MWCNT based electrochemical sensor for sensitive detection of bisphenol A, Russ. J. Electrochem., 2017, vol. 53, p. 366.
  27. Mazloum-Ardakani, M., Beitollahi, H., Taleat, Z., Naeimi, H., and Taghavinia, N., Selective voltammetric determination of D-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2 nanoparticles and quinizarine, J. Electroanal. Chem., 2010, vol. 644. p. 1.
  28. Hu, Y., Huang, Y., Tan, C., Zhang, X., Lu, Q., Sindoro, M., Huang, X., Huang, W., Wang, L., and Zhang, H., Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications, Mater. Chem. Front., 2017, vol. 1, p. 24.
  29. Tajik, S., Taher, M.A., and Beitollahi, H., First report for electrochemical determination of levodopa and cabergoline: application for determination of levodopa and cabergoline in human serum, urine and pharmaceutical formulations, Electroanalysis, 2014, vol. 26, p. 796.
  30. Idris, A.O., Mafa, J.P., Mabuba, N., and Arotiba, O.A., Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water, Russ. J. Electrochem., 2017, vol. 53, p. 170.
  31. Azadbakht, A. and Abbasi, A.R., Fabrication of a highly sensitive hydrazine electro- chemical sensor based on bimetallic Au-Pt hybrid nanocomposite onto modified electrode, Nano-Micro Lett., 2010, vol. 2, p. 296.
  32. Ganesh, P.S. and Kumara-Swamy, B.E., Voltammetric resolution of catechol and hydroquinone at eosin Y film modified carbon paste electrode, J. Mol. Liq., 2016, vol. 220, p. 208.
  33. Karimi-Maleh, H., Keyvanfard, M., Alizad, K., Fouladgar, M., Beitollahi, H., Mokhtari, A., and Gholami-Orimi, F., Voltammetric determination of N-actylcysteine using modified multiwall carbon nanotubes paste electrode, Int. J. Electrochem. Sci., 2011, vol. 6, p. 6141.
  34. Wang, P., Xiao, J., Guo, M., Xia, Y., Li, Z., Jiang, X., and Huang, W., Voltammetric determination of 4-nitrophenol at graphite nanoflakes modified glassy carbon electrode, J. Electrochem. Soc., 2015, vol. 162, p. H72.
  35. Han, L., Tao, H., Huang, M., Zhang, Y., Qiao, S., and Shi, R., A hydrogen peroxide biosensor based on multiwalled carbon nanotubes-polyvinyl butyral film modified electrode, Russ. J. Electrochem., 2016, vol. 52, p. 115.
  36. Beitollahi, H., Movahedifar, F., Tajik, S., and Jahani, S., A review on the effects of introducing CNTs in the modification process of electrochemical sensors, Electroanalysis, 2018, vol. 31, no. 7, pp. 1195–1203. https://doi.org/10.1002/elan.201800370
  37. Yalcmer, F., Cevik, E., Senel, M., and Baykal, A., Development of an amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto nickel ferrite nanoparticle-chitosan composite, Nano-Micro Lett., 2011, vol. 3, p. 91.
  38. Yukird, J., Kongsittikul, P., Qin, J., Chailapakul, O., and Rodthongkum, N., ZnO graphene nanocomposite modified electrode for sensitive and simultaneous detection of Cd(II) and Pb(II), Synth. Met., 2018, vol. 245, p. 251.
  39. Kalate-Bojdi, M., Mashhadizadeh, M.H., Behbahani, M., Farahani, A., Hossein-Davarani, S.S., and Bagheri, A., Synthesis, characterization and application of novel lead imprinted polymer nanoparticles as a high selective electrochemical sensor for ultra-trace determination of lead ions in complex matrixes, Electrochim. Acta, 2014, vol. 136, p. 59.
  40. Beitollahi, H., Ghofrani-Ivari, S., and Torkzadeh-Mahani, M., Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO-CuO nanoplates and modifier, Mater. Sci. Eng. C, 2016, vol. 69, p. 128.
  41. Kumar, N. and Goyal, R.N., Melamine/Fe3O4 nanoparticles based molecular imprinted highly sensitive sensor for determination of hydrochlorothiazide: an antihypertensive drug, J. Electrochem. Soc., 2017, vol. 164, p. B240.
  42. Yu, L., Wu, H., Wu, B., Wang, Z., Cao, H., Fu, C., and Jia, N., Magnetic Fe3O4 reduced graphene oxide nanocomposites-based electrochemical biosensing, Nano-Micro Lett., 2014, vol. 6, p. 258.
  43. Sun, Y., Duan, L., Guo, Z., Duan-Mu, Y., Ma, M., Xu, L., Zhang, Y., and Gu, N., An improved way to prepare superparamagnetic magnetite-silica core–shell nanoparticles for possible biological application, J. Magn. Magn. Mater., 2005, vol. 285, p. 65.
  44. Beitollahi, H. and Garkani-Nejad, F., Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode, Electroanalysis, 2016, vol. 28, p. 2237.
  45. Huang, W., Xiao, X., Engelbrekt, C., Zhang, M., Li, S., Ulstrup, Je., Ci, L., Feng, J., Si, P., and Chi, Q., Graphene encapsulated Fe3O4 nanorods assembled into a mesoporous hybrid composite used as a high-performance lithium-ion battery anode material, Mater. Chem. Front., 2017, vol. 1, p. 1185.
  46. Bagheri, H., Shirzadmehr, A., Rezaei, M., and Khoshsafar, H., Determination of tramadol in pharmaceutical products and biological samples using a new nanocomposite carbon paste sensor based on decorated nanographene/tramadol-imprinted polymer nanoparticles/ionic liquid, Ionics, 2018, vol. 24, p. 833.
  47. Gasbarri, C. and Angelini, G., Polarizability over dipolarity for the spectroscopic behavior of azobenzenes in room-temperature ionic liquids and organic solvents, J. Mol. Liq., 2017, vol. 229, p. 185.
  48. Zhang, J., Wang, X., Zhang, S., Wang, W., Hojo, M., and Chen, Z., An electrochemical sensor for simultaneous determination of ponceau 4R and tartrazine based on an ionic liquid modified expanded graphite paste electrode, J. Electrochem. Soc., 2014, vol. 161, p. H453.
  49. Fernández, E., Vidal, L., Iniesta, J., Metters, J.P., and Banks, C.E., Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid-liquid microextraction for determination of 2,4,6-trinitrotoluene, Anal. Bioanal. Chem., 2014, vol. 406, p. 2197.
  50. Park, K.W. and Hwa-Jung, J., Spectroscopic and electrochemical characteristics of a carboxylated graphene-ZnO composites, J. Power Sources, 2012, vol. 199, p. 379.
  51. Arvand, M. and Hassannezhad, M., Magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid, Mater. Sci. Eng. C, 2014, vol. 36, p. 160.
  52. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.