Статья
2019

Synthesis of (Ti0.5V0.5)3C2 as Novel Electrocatalyst to Modify Carbon Paste Electrode for Measurement of Propranolol in Real Samples


M. R. Nateghi M. R. Nateghi
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519010087
Abstract / Full Text

(Ti0.5V0.5)3AlC2 is prepared via ball-milling Ti, V, Al, and C precursor powders with mole ratio of 1.5 : 1.5 :1.1 : 1.9 followed by sintering the obtained fine powder at 1400°C for 20 min under argon atmosphere. The morphology and structure of products are characterized by using XRD and SEM techniques. Then Al is chemically etched from synthesized (Ti0.5V0.5)3AlC2 by immersing in 40% HF solution at room temperature for 20 h. The resulting suspension is centrifuged to separate the powder and washed severely with distilled water. Resulting (Ti0.5V0.5)3C2 is used as a new modifier for preparation of carbon paste electrode. Modified electrode based on (Ti0.5V0.5)3C2 shows a good performance for measurement of propranolol concentration in pharmaceutical formulation. The detection limit and the relative standard deviation for n = 5 are 0.16 μmol/L and 4%, respectively.

Author information
  • Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran

    M. R. Nateghi

References
  1. Barsoum, M.W., The Mn + 1AXn phases: a new class of solids; thermodynamically stable nanolaminates, Prog. Solid State Chem., 2000, vol. 28, p. 201
  2. Naguib, M., Mochalin, V.N., Barsoum, M.W., and Gogotsi, Y., MXenes: a new family of two-dimensional materials, Adv. Mat., 2014, vol. 26, p. 992.
  3. Eklund, P., Beckers, M., Jansson, U., Högberg, H., and Hultman L., The Mn + 1AXn phases: materials science and thin-film processing, Thin Solid Films, 2010, vol. 518, pp. 1851–1878.
  4. Khazaei, M., Arai, M., and Sasaki, T., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Funct. Mater., 2012, vol. 23, p. 2185.
  5. Lei, J.C., Zhang, X., and Zhou, Z., Recent advances in MXene: preparation, properties, and applications, Front. Phys., 2015, vol. 10, p. 107303:1.
  6. Naguib, M., Bentzel, G.W., and Shah, J., New solid solution MAX phases: (Ti0.5V0.5)3AlC2, (Nb0.5V0.5)2AlC, (Nb0.5V0.5)4AlC3 and (Nb0.8Zr0.2)2AlC, Mater. Res. Lett., 2014, vol. 2, no. 4.
  7. Naguib, M., Mashtalir, O., and Carle, J., Two-dimensional transition metal carbides, ACS Nano, 2012, vol. 6, p. 1322.
  8. Kuchida, S., Muranaka, T., and Kawashima, K., Superconductivity in Lu2SnC, Phys. C, 2013, vol. 494, p. 77.
  9. Naguib, M., Dyatkin, B., Gogotsi, Y., and Barsoum, M.W., Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid, Mater. Chem. Phys., 2013, vol. 139, p. 147.
  10. Come, J., Naguib, M., and Rozier, P., A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode, J. Electrochem. Soc., 2012, vol. 159, p. A1368.
  11. Hu, J., Xu, B., and Ouyang, C., Investigations on V2C and V2CX2 (X = F, OH) monolayer as a promising anode material for Li ion batteries from first principles calculations, J. Phys. Chem. C, 2014, vol. 118, p. 24274.
  12. Xie, X., Chen, S., and Ding, W., An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction, Chem. Commun., 2013, vol. 49, p. 10112.
  13. Wang, F., Yang, C.H., and Duan, C.Y., An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor, J. Electrochem. Soc., 2015, vol. 162, p. B16; Liu, H., Duan, C., and Yang, C., A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2, Sens. Actuators B, 2015, vol. 218, p. 60.
  14. Xu, B., Zhu, M., and Zhang, W., Ultrathin MXene micrcropattern-based field-effect transistor for probing neural activity, Adv. Mater., 2016, vol. 28, p. 3333.
  15. El-Ries, M.A., AbouAttia, F.M., and Ibrahim, S.A., AAS and spectrophotometric determination of propranolol HCl and metoprolol tartrate, J. Pharm. Biomed. Anal., 2000, vol. 24, p. 179.
  16. Vignaduzzo, S.E., Maggio, R.M., Castellano, P.M., and Kaufman, T.S., PLS and first derivative of ratio spectra methods for determination of hydrochlorothiazide and propranolol hydrochloride in tablets, Anal. Bioanal. Chem., 2006, vol. 386, p. 2239.
  17. Aminot, Y., Litrico, X., and Chambolle, M., Development and application of a multi-residue method for the determination of 53 pharmaceuticals in water, sediment, and suspended solids using liquid chromatography-tandem mass spectrometry, Anal. Bioanal. Chem., 2015, vol. 407, p. 8585.
  18. Boonjob, W., Sklenářová, H., and Lara, F.J., Retention and selectivity of basic drugs on solid-phase extraction sorbents: application to direct determination of β-blockers in urine, Anal. Bioanal. Chem., 2014, vol. 406, p. 4207.
  19. Junior, J.M.M., Muller, A.L.H., and Foletto, E.L., Determination of propranolol hydrochloride in pharmaceutical preparations using near infrared spectrometry with fiber optic probe and multivariate calibration methods, J. Anal. Methods Chem., 2015, vol. 2015, p. 1.
  20. He, Y., Chai, X.J., and Zeng, S., Reversed-phase highperformance liquid chromatographic analysis of seven pairs of chiral drug enantiomers in transport medium after chiral derivatization, J. Chin. Pharm. Sci., 2010, vol. 19, p. 104.
  21. Marques, K.L., Santos, J.L.M., and Lima, J.L.F.C., Chemiluminometric determination of propranolol in an automated multicommutated flow system, J. Pharm. Biomed. Anal., 2005, vol. 39, p. 886.
  22. Partani, P., Modhave, Y., and Gurule, S., Simultaneous determination of propranolol and 4-hydroxy propranolol in humanplasma by solid phase extraction and liquid chromatography/electrospraytandem mass spectrometry, J. Pharm. Biomed. Anal., 2009, vol. 50, p. 966.
  23. Shadjou, N., Hasanzadeh, M., and Saghatforoush, L., Electrochemical behavior of atenolol, carvedilol and propranolol on copper-oxide nanoparticles, Electrochim. Acta, 2011, vol. 58, p. 336.
  24. Sartori, E.R., Medeiros, R.A., Rocha-Filho, R.C., and Fatibello-Filho, O., Square wave voltammetric determination of propranolol and atenolol in pharmaceuticals using boron doped diamond electrode, Talanta, 2010, vol. 81, p. 1418.
  25. Santos, S.X., Cavalheiro, E.T.G., and Brett, C.M.A., Analytical potentialities of carbon nanotube/silicone rubber composite electrodes: determination of propranolol, Electroanalysis, 2010, vol. 22, p. 2776.
  26. Radi, A., Wassel, A.A., and El Ries, M.A., Adsorptive behavior and voltammetric analysis of propranolol at carbon paste electrode, Chem. Anal. (Warsaw), 2004, vol. 49, p. 51.
  27. Kun, Z., Shuai, Y., Dongmei, T., and Yuyang, Z., Electrochemical behavior of propranolol hydrochloride in neutral solution on calixarene/multi-walled carbon nanotubes modified glassy carbon electrode, J. Electroanal. Chem., 2013, vol. 709, p. 99.
  28. Gaichore, R.R. and Srivastava, A.K., Electrocatalytic determination of propranolol hydrochloride at carbon paste electrode based on multiwalled carbon-nanotubes and c-cyclodextrin, J. Incl. Phenom. Macrocycl. Chem., 2014, vol. 78, p. 195.
  29. Baranowska, I. and Koper, M., Electrochemical behavior of propranolol and its major metabolites, 40-hydroxypropranolol and 40-hydroxypropranolol sulfate, on glassy carbon electrode, J. Braz. Chem. Soc., 2011, vol. 22, p. 1601.
  30. Gurtova, O., Ye, L., and Chmilenko, F., Potentiometric propranolol-selective sensor based on molecularly imprinted polymer, Anal. Bioanal. Chem., 2013, vol. 405, p. 287.
  31. Canabate Diaz, B., Cruces Blanco, C., Segura Carretero, A., and Fernandez Gutierrez, A., Simple determination of propranolol in pharmaceutical preparations by heavy atom induced room temperature phosphorescence, J. Pharm. Biomed. Anal., 2002, vol. 30, p. 987.
  32. Kun, Z., Yi, H., Chengyun, Z., Yue, Y., Shuliang, Z., and Yuyang, Z., Electrochemical behavior of propranolol hydrochloride in neutral solution on platinum nanoparticles doped multi-walled carbon nanotubes modified glassy carbon electrode, Electrochim. Acta, 2012, vol. 80, p. 405.