Examples



mdbootstrap.com



 
Статья
2017

Synthesis of polymer nanocomposite ion-exchange membranes from sulfonated polystyrene and study of their properties


A. N. Ponomarev A. N. Ponomarev , E. F. Abdrashitov E. F. Abdrashitov , D. A. Kritskaya D. A. Kritskaya , V. Ch. Bokun V. Ch. Bokun , E. A. Sanginov E. A. Sanginov , Yu. A. Dobrovol’skii Yu. A. Dobrovol’skii
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517060143
Abstract / Full Text

Methods for the preparation of composite ion-exchange membranes from polymer (polyvinylidene fluoride (PVDF), ultrahigh molecular weight polyethylene (UHMWPE), and polypropylene (PP)) matrices were considered. Polystyrene (PS) was introduced in the matrices by thermal polymerization of the monomer followed by sulfonation of the implant. The fundamentals of membrane synthesis from industrial polytetrafluoroethylene (PTFE, Teflon F-4) films by thermal polymerization of styrene in a film stretched in a monomer solution followed by sulfonation of incorporated PS were described. The literature on radiation- chemical synthesis of composite ion-exchange membranes based on polymer matrices with embedded polystyrene and its subsequent sulfonation was analyzed. Some problems of the kinetics and mechanism of thermal implantation of PS into various polymer matrices under different conditions were discussed. The physicochemical characteristics, structure, and transport properties of the membranes synthesized by thermal implantation of PS were reported. The obtained membranes were tested in low-temperature fuel cells.

Author information
  • Branch of Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432, Russia

    A. N. Ponomarev, E. F. Abdrashitov, D. A. Kritskaya & V. Ch. Bokun

  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432, Russia

    E. A. Sanginov & Yu. A. Dobrovol’skii

References
  1. Ivanchev, S.S. and Myakin, S.V., Russ. Chem. Rev., 2010, vol. 79, p. 101.
  2. Chen, H., Palmese, G.R., and Elabt, Y.A., Chem. Mater., 2006, vol. 18, p. 4875.
  3. Kabanov, V.Y., High Energy Chem., 2004, vol. 38, p. 57.
  4. Gubler, L., Adv. Energy Mater., 2014, vol. 4, article no. 1300827.
  5. Nasef, M.M., Chem. Rev., 2014, vol. 114, p. 12278.
  6. Gubler, L. and Bonorand, L., ECS Trans., 2013, vol. 58, p. 149.
  7. Gürsel, S.A., Gubler, L., Gupta, B., and Scherer, G.G., Adv. Polym. Sci., 2008, vol. 215, p. 157.
  8. Gubler, L., Gürsel, S.A., and Scherer, G.G., Fuel Cells, 2005, vol. 5, p. 317.
  9. Chen, J., Asano, M., Maekawa, Y., and Yoshida, M., J. Membr. Sci., 2006, vol. 277, p. 249.
  10. Chen, J., Septiani, U., Asano, M., Maekawa, Y., Kubota, H., and Yoshida, M., J. Appl. Polym. Sci., 2007, vol. 103, p. 1966.
  11. Buchi, F.N., Gupta, B., Haas, O., and Scherer, G.G., Electrochim. Acta, 1995, vol. 40, p. 345.
  12. Nasef, M.M., Saidi, H., Dessouki, A.M., and EI-Nesr, E.M., Polym. Int., 2000, vol. 49, p. 399.
  13. Nasef, M.M., Saidi, H., Nor, H.M., and Foo, O.M., Polym. Int., 2000, vol. 49, p. 1572.
  14. Sun, J., Zhang, Y., and Zhong, X., Polymer, 1994, vol. 35, p. 2881.
  15. Sun, J., Zhang, Y., Zhong, X., and Zhu, X., Radiat. Phys. Chem., 1994, vol. 44, p. 655.
  16. Oshima, A., Seguchi, T., and Tabata, Y., Radiat. Phys. Chem., 1977, vol. 50, p. 601.
  17. Yamaki, T., Asano, M., Morita, Y., Suwa, T., Chen, J., Tsubokawa, N., Robayashi, K., Kubota, H., and Yoshida, M., Radiat. Phys. Chem., 2003, vol. 67, p. 403.
  18. Yamaki, T., Kobayashi, K., Asano, M., Kubota, H., and Yoshida, M., Polymer, 2004, vol. 45, p. 6569.
  19. Sawada, S., Yamaki, T., Nishimura, H., Asano, M., Suzuki, A., Terai, T., and Maekawa, Y., Solid State Ionics, 2008, vol. 179, p. 1611.
  20. Yamaki, T., Tsukada, J., Asana, M., Katakai, R., and Yoshida, M., J. Fuel Cell Sci. Technol., 2007, vol. 4, p. 56.
  21. Yamaki, T., Sawada, S., Asano, M., Maekawa, Y., Yoshida, M., Gubler, L., Alkan-Gürsel, S., and Scherer, G.G., ECS Trans., 2009, vol. 25, p. 1439.
  22. Yoshida, M., Kimura, Y., Chen, J., Asano, M., and Maekawa, Y., Radiat. Phys. Chem., 2009, vol. 78, p. 1060.
  23. Forsyte, J.S. and Hill, D.J.T., Prog. Polym. Sci., 2000, vol. 25, p. 106.
  24. Kim, B.-N., Lee, D.-H., and Han, D.-H., Korean J. Chem. Eng., 2008, vol. 25, p. 1212.
  25. Kim, B.-N., Lee, D.-H., Lee, S.-W., and Han, D.-H., Polym. Degrad. Stab., 2008, vol. 93, p. 1214.
  26. Fei, G., Shin, J., Kang, S., Ko, B.-S., Kang, P.-H., Lee, Y.-S., and Nho, Y.C., J. Polym. Sci., Part A: Gen. Pap., 2010, vol. 48, p. 563.
  27. Fei, G., Hwang, M.-L., and Shin, J., High Perform. Polym., 2011, vol. 23, p. 555.
  28. Flint, S.D. and Slade, R.S.T., Solid State Ionics, 1997, vol. 97, p. 299.
  29. Homberg, S., Näsman, J.H., and Sundholm, F., Polym. Adv. Technol., 1998, vol. 9, p. 121.
  30. Nasef, M.M., Saidi, H., Desouki, A.M.El., and Nesr, E.M., Polym. Int., 2000, vol. 49, p. 399.
  31. Hietala, S., Holmberg, S., Karjalainen, M., Näsman, J., Paronen, M., Serimaa, R., Sundholm, F., and Vahvaselka, S., J. Mater. Chem., 1997, vol. 7, p. 721.
  32. Hietala, S., Paronen, M., Holmberg, S., Näsman, J., Juhanoja, J., Karjalainen, V., Serimaa, R., Toivola, M., Lehtinen, T., Parovuori, K., Sundholm, G., Ericson, H., Mattsson, B., Torell, L., and Sundholm, F., J. Polym. Sci., Part A: Gen. Pap., 1999, vol. 37, p. 1742.
  33. Lehtinen, T., Sundholm, G., Holnerg, S., Sundholm, F., Bjornbom, P., and Bursell, M., Electrochim. Acta, 1998, vol. 43, p. 1881.
  34. Hietala, S., Skou, E., and Sundholm, F., Polymer, 1999, vol. 40, p. 5567.
  35. Nasef, M.M., Zubir, N.A., Ismail, A.F., Khayet, M., Dahlan, K.Z.M., Saidi, H., Rohani, R., Ngah, T.I.S., and Sulaiman, N.A., J. Membr. Sci., 2006, vol. 268, p. 96.
  36. Kalio, T., Jokela, K., Ericson, H., Serimaa, R., Sundholm, G., Jakobson, P., and Sundholm, F., J. Appl. Electrochem., 2003, vol. 33, p. 505.
  37. Gode, P., Ihonen, J., Strandroth, A., Ericson, H., Lindbergh, G., Paronen, M., Sundholm, F., Sundholm, G., and Walsby, N., Fuel Cells, 2003, vol. 3, p. 21.
  38. Nasef, M.M., Saidi, H., and Dahlan, K.Z.M., J. Membr. Sci., 2009, vol. 339, p. 115.
  39. Nasef, M.M., Saidi, H., and Dahlan, K.Z.M., J. Appl. Polym. Sci., 2010, vol. 118, p. 2801.
  40. Nasef, M.M., Saidi, H., and Dahlan, K.Z.M., Polym. Int., 2011, vol. 60, p. 186.
  41. Kim, S.-K., Lee, Y.-S., Koo, K.-K., Kim, S.-H., and Choi, S.-H., J. Nanosci. Nanotechnol., 2015, vol. 15, p. 6942.
  42. Kimura, Y., Asano, M., Chen, J., Maekawa, Y., Katakai, R., and Yoshida, M., Radiat. Phys. Chem., 2008, vol. 77, p. 864.
  43. Geraldes, A.N., Zen, H.A., Ribeiro, G., Parra, D.F., and Lugao, A.B., Radiat. Phys. Chem., 2013, vol. 84, p. 205.
  44. Chen, J.H., Asano, M., Yamaki, T., and Yoshida, M., J. Appl. Polym. Sci., 2006, vol. 100, p. 4565.
  45. Chen, J.H., Asano, M., Yamaki, T., and Yoshida, M., J. Power Sources, 2006, vol. 158, p. 69.
  46. Youcef, H.B., Gürsel, S.A., Wokaun, A., and Scherer, G.G., J. Membr. Sci., 2008, vol. 311, p. 208.
  47. Gubler, L., Youcef, H.B., Gürsel, S.A., Wokaun, A., and Scherer, G.G., J. Electrochem. Soc., 2008, vol. 155, p. B921.
  48. Youcef, H.B., Gubler, L., Yamaki, T., Sawada, S., Gürsel, S.A., Wokaun, A., and Scherer, G.G., J. Electrochem. Soc., 2009, vol. 156, p. B532.
  49. Kang, S., Jung, D.-H., Shin, J., Kim, S.-K., Shul, Y., and Peck, D.-H., J. Membr. Sci., 2014, vol. 459, p. 12.
  50. Youcef, H.B., Gubler, L., Foelske-Schmitz, A., and Scherer, G.G., J. Membr. Sci., 2011, vol. 381, p. 102.
  51. Balog, S., Gasser, U., Mortensen, K., Youcef, H.B., Gubler, L., and Scherer, G.G., J. Membr. Sci., 2011, vol. 383, p. 50.
  52. Chen, J., Asano, M., Maekawa, Y., and Yoshida, M., J. Membr. Sci., 2007, vol. 296, p. 77.
  53. Chen, J., Asano, M., Maekawa, Y., and Yoshida, M., J. Polym. Sci., Part A, 2008, vol. 46, p. 5559.
  54. Sohn, J.Y., Sung, H.J., Song, J.M., and Shin, J., and Nho, Y.C., Radiat. Phys. Chem., 2012, vol. 81, p. 923.
  55. Sohn, J.Y., Sung, H.J., Shin, J., Ko, B.S., Song, J.M., and Nho, Y.C., Macromol. Res., 2012, vol. 20, p. 912.
  56. Chen, J., Asano, M., Yamaki, T., and Yoshida, M., J. Mater. Sci., 2006, vol. 41, p. 1289.
  57. Chen, J., Asano, M., Yamaki, T., and Yoshida, M., J. Membr. Sci., 2006, vol. 269, p. 194.
  58. Gürsel, S.A., Yang, Z., Choudhury, B., Roelofs, M.G., and Scherer, G.G., J. Electrochem. Soc., 2006, vol. 153, p. A1964.
  59. Atanasov, V. and Kerres, J., Eur. Polym. J., 2015, vol. 63, p. 168.
  60. Gubler, L., Slaski, M., Wokaun, A., and Scherer, G.G., Electrochem. Commun., 2006, vol. 8, p. 1215.
  61. Gubler, L., Slaski, M., Wallasch, F., Wokaun, A., and Scherer, G.G., J. Membr. Sci., 2009, vol. 339, p. 68.
  62. Youcef, H.B., Gubler, L., Gursel, S.A., Henkensmeier, D., Wokaun, A., and Scherer, G.G., Electrochem. Commun., 2009, vol. 11, p. 941.
  63. Henkensmeier, D., Youcef, H.B., Wallasch, F., and Gubler, L., J. Membr. Sci., 2013, vol. 447, p. 228.
  64. Jetsrisuparb, K., Balog, S., Bas, C., Perrin, L., Wallasch, F., and Gubler, L., Eur. Polym. J., 2014, vol. 53, p. 75.
  65. Buchmuller, Y., Wokaun, A., and Gubler, L., J. Mater. Chem. A, 2014, vol. 2, p. 5870.
  66. Nasef, M.M., Saidi, H., and Yamada, A.H., J. Appl. Membr. Sci. Technol., 2005, vol. 2, p. 47.
  67. Shen, M., Roy, S., Kuhlmann, J., Scott, K., Lovel, K., and Horsfall, J., J. Membr. Sci., 2005, vol. 251, p. 121.
  68. Sherazi, T.A., Ahmad, S., Kashmiri, M.A., and Guiver, M.D., J. Membr. Sci., 2008, vol. 325, p. 964.
  69. Sherazi, T.A., Ahmad, S., Kashmiri, M.A., Kim, D.S., and Guiver, M.D., J. Membr. Sci., 2009, vol. 333, p. 59.
  70. Sherazi, T.A., Guiver, M.D., Kingston, D., Ahmad, S., Kashmiri, M.A., and Xue, X.Z., J. Power Sources, 2010, vol. 195, p. 21.
  71. Li, D., Chen, J., Zhai, M., Asano, M., Maekawa, Y., Oku, H., and Yoshida, M., Nucl. Instrum. Methods Phys. Res., Sect. B, 2009, vol. 267, p. 103.
  72. Denisova, L.N. and Denisov, E.T., Izv. Akad. Nauk SSSR, Ser. Khim., 1965, p. 1702.
  73. Hui, A.W. and Hamielec, A.E., J. Appl. Polym. Sci., 1972, vol. 16, p. 749.
  74. Chen, C.-C., Duh, Y.-S., and Shu, C.-M., J. Hazard. Mater., 2009, vol. 163, p. 1385.
  75. Kurochkin, S.A., Silant’ev, M.A., Perepelitsina, E.O., Berezin, M.P., Baturina, A.A., Grachev, V.P., and Korolev, G.V., Polym. Sci., Ser. B, 2012, vol. 54, p. 223
  76. Abdrashitov, E.F., Bokun, V.Ch., Kritskaya, D.A., Sanginov, E.A., Ponomarev, A.N., and Dobrovolsky, Y.A., Russ. J. Electrochem., 2011, vol. 47, p. 387.
  77. Abdrashitov, E.F., Bokun, V.Ch., Kritskaya, D.A., Sanginov, E.A., Ponomarev, A.N., and Dobrovolsky, Y.A., Solid State Ionics, 2013, vol. 251, p. 9.
  78. Abdrashitov, E.F., Kritskaya, D.A., and Ponomarev, A.N., Khim. Fiz., 2015, vol. 34, p. 87.
  79. Nikolaev, A.F., Sinteticheskie polimery i plasticheskie massy na ikh osnove (Synthetic Polymers and Plastics on Their Basis), Moscow: Khimiya, 1996, p. 89.
  80. Abdrashitov, E.F., Kritskaya, D.A., Voilov, D.N., Dremova, N.N., Sanginov, E.A., Ponomarev, A.N., and Dobrovol’skii, Yu.A., Membr. Membr. Tekhnol., 2011, vol. 1, p. 282.
  81. Siu, A., Pivovar, B., Horsfall, J., Lovel, K.V., and Holdcro, S., J. Polym. Sci., Part B: Polym. Lett., 2006, vol. 44, p. 2240.
  82. Carrette, L., Friedrich, K.A., and Stimming, U., Fuel Cells, 2001, vol. 1, p. 5.
  83. Buchi, F.N., Gupta, B., Haas, O., and Scherer, G.G., J. Electrochem. Soc., 1995, vol. 142, p. 3044.
  84. Wang, H. and Capuano, G.A., J. Electrochem. Soc., 1998, vol. 145, p. 780.
  85. Arico, A.S., Srinivasan, S., and Antonucci, V., Fuel Cells, 2001, vol. 1, p. 133.
  86. Scott, K., Taama, W.M., and Argyropoulos, P., J. Membr. Sci., 2000, vol. 171, p. 119.
  87. DeLuca, N.W. and Elabd, Y.A., J. Power Sources, 2006, vol. 163, p. 386.
  88. Bokun, V.Ch., Kritskaya, D.A., Abdrashitov, E.F., Ponomarev, A.N., Sanginov, E.A., Yaroslavtsev, A.B., and Dobrovol’sky, Y.A., Russ. J. Electrochem., 2015, vol. 51, p. 435.
  89. Kritskaya, D.A., Chernyak, A.V., Vasil’ev, S.G., Abdrashitov, E.F., Bokun, V.Ch., Ponomarev, A.N., and Dmitruk, A.S., and Volkov V.I., Pet. Chem., 2013, vol. 53, p. 590.
  90. Affoune, A.M., Yamada, A., and Umeda, M., J. Power Sources, 2005, vol. 148, p. 9.
  91. Volynskii, A.L. and Bakeev, N.F., Russ. Chem. Bull., 2005, vol. 54, p. 1.
  92. Yarysheva, L.M., Rukhlya, E.G., Yarysheva, A.Yu., Volynskii, A.L., and Bakeev, N.F., Obz. Zh. Khim., 2012, vol. 2, p. 3.
  93. Volynskii, A.L., Yarysheva, A.Yu., Rukhlya, E.G., Efimov, A.V., Yarysheva, L.M., and Bakeev, N.F., Russ. Chem. Rev., 2013, vol. 82, p. 988.
  94. Volynskii, A.L., Ukolova, E.M., Shmatok, E.A., Arzhakova, O.V., Yarysheva, L.M, Lukovkin, G.M., and Bakeev, N.F., Dokl. Akad. Nauk SSSR, 1990, vol. 310, p. 380.
  95. Volynskii, A.L., Shmatok, E.A., Ukolova, E.M., Arzhakova, O.V., Yarysheva, L.M., Lukovkin, G.M., and Bakeev, N.F., Vysokomol. Soedin., Ser. A, 1991, vol. 33, p. 1004.
  96. Sinevich, E.A., Bykova, I.V., Chvalun, S.N., and Bakeev, N.F., Vysokomol. Soedin., Ser. A, 1997, vol. 39, p. 1817.
  97. Hashida, Sh. and Namio, H., J. Appl. Polym. Sci., 1989, vol. 37, p. 2897.
  98. Timofeev, S.V., Bobrova, L.P., Terutskii, E.I., Fateev, V.N., and Pugachev, A.K., Al’tern. Energ. Ekol., 2007, no. 2, p. 128.
  99. Fischer, S. and Brown, N., J. Appl. Phys., 1973, vol. 4, p. 4322.
  100. Kochervinskii, V.V., Glukhov, V.A., and Leont’ev, V.P., Vysokomol. Soedin., Ser. A, 1986, vol. 28, p. 695.
  101. Abdrashitov, E.F., Kritskaya, D.A., Bokun, V.Ch., Ponomarev, A.N., Novikova, K.S., Sanginov, E.A., and Dobrovolsky, Y.A., Solid State Ionics, 2016, vol. 286, p. 135.
  102. Cassie, A.B.D. and Baxter, S., Trans. Faraday Soc., 1944, vol. 40, p. 546.
  103. Kritskaya, D.A., Abdrashitov, E.F., Bokun, V.Ch., Ponomarev, A.N., Chernyak, A.V., Vasil’ev, S.G., and Volkov, V.I., Pet. Chem., 2011, vol. 51, p. 644.
  104. Zawodzinski, Th.A.Jr., Derouin, Ch., Radzinski, S., Sherman, R.J., Smith, V.T., Shimshon, Th.E., and Gottesfeld, Sh., J. Electrochem. Soc., 1993, vol. 140, p. 1041.
  105. Gallyamov, M.O. and Khokhlov, A.R., Toplivnye elementy s polimernoi membranoi: Materialy k kursu po osnovam toplivnykh elementov (Fuel Cells with a Polymer Membrane: Materials for the Course on the Fundamentals of Fuel Cells), Moscow: Mosk. Gos. Univ., 2014, p. 35.