Quantum-Chemical Analysis of the Electron Transfer Mechanism in Model System MgNbF7 + 12MgCl2 by the Method of Frontier Molecular Orbitals

V. G. Kremenetsky V. G. Kremenetsky , S. A. Kuznetsov S. A. Kuznetsov
Российский электрохимический журнал
Abstract / Full Text

By the example of quantum-chemical analysis of the model system MgNbF7 + 12MgCl2, the possibilities of the method of frontier molecular orbitals in studying the mechanism of electron transfer in molten salts are demonstrated. The rich information provided by this method allows recommending it as a tool for testing the hypotheses on the mechanism of charge transfer in electrochemical systems.

Author information
  • Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Cola Science Center, Russian Academy of Sciences, Apatity, 184209, Russia

    V. G. Kremenetsky & S. A. Kuznetsov

  1. Kremenetsky, V.G., Kremenetskaya, O.V., Kuznetsov, S.A., and Kalinnikov, V.T., Quantum-chemical validation of formation of stable complex species in molten alkali metal halides, Dokl. Phys. Chem., 2013, vol. 452, no. 1, p. 213. doi https://doi.org/10.1134/S0012501613090042
  2. Kremenetsky, V.G. and Kremenetskaya, O.V., Quantum- chemical validation of the relative stability of complex species with different outer-sphere composition in the M3CrF6 + 18MCl systems (M = Na, K), Russ. J. Inorg. Chem., 2013, vol. 58, no. 12, p. 1523. doi https://doi.org/10.1134/S0036023614010070
  3. Stulov, Yu.V., Kremenetsky, V.G., and Kuznetsov, S.A., Electrochemical and quantum-chemical studies of chromium(III,II) fluoride complexes in alkali chloride melts, Russ. J. Electrochem., 2014, vol. 50, no. 9, p. 815.
  4. Fukui, K., Yonezawa, T., and Shingu, H., A molecular orbital theory of reactivity in aromatic hydrocarbons, J. Chem. Phys., 1952, vol. 20, no. 4, p. 722. doi https://doi.org/10.1063/1.1700523
  5. Popova, A.V., Kremenetsky, V.G., and Kuznetsov, S.A., The effect of the second coordination sphere on electrochemistry of niobium fluoride complexes in alkali halide melts. I. Diffusion coefficients of Nb(V) and Nb(IV) complexes, J. Electrochem. Soc., 2014, vol. 161, no. 9, p. H447. doi https://doi.org/10.1149/2.0261409jes
  6. Popova, A.V. and Kuznetsov, S.A., The effect of the second coordination sphere on electrochemistry of niobium complexes in alkali halide melts. II. Standard rate constants of charge transfer for the Nb(V)/Nb(IV) redox couple, J. Electrochem. Soc., 2016, vol. 163, no. 2, p. H53. doi https://doi.org/10.1149/2.0611602jes
  7. Vetrova, D.A. and Kuznetsov, S.A., Influence of alkaline earth metal cations on the charge transfer kinetics for the redox couple Ti(IV)/Ti(III) in a chloride-fluoride melt, Russ. Metall. (Engl. Transl.), 2017, vol. 2017 (2), p. 100.
  8. Nicholson, R.S., Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics, Anal. Chem., 1965, vol. 37, no. 11, p. 1351. doi https://doi.org/10.1021/ac60230a016
  9. Kuznetsov, S.A., Kuznetsova, S.V., and Stangrit, P.T., Cathodic reduction of hafnium tetrachloride in a molten equimolar mixture of sodium and potassium chlorides, Russ. J. Electrochem., 1990, vol. 26, no. 1, p. 55.
  10. Granovsky, A.A., Firefly version 7.1.G., https://doi.org/classic.chem.msu.su/gran/gamess/index.html
  11. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A., General atomic and molecular electronic structure system, J. Comp. Chem., 1993, vol. 14, no. 11, p. 1347. doi https://doi.org/10.1002/jcc.540141112
  12. Feller, D.J., The role of databases in support of computational chemistry calculations, J. Comp. Chem., 1996, vol. 17, N. 13, p. 1571.
  13. Schuchardt, K.L., Didier, B.T., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., Li, J., and Windus, T.L., Basis set exchange: a community database for computational sciences, J. Chem. Inf. Model., 2007, vol. 47, no. 3, p. 1045. doi https://doi.org/10.1021/ci600510j
  14. EMSL Basis Set Library, https://doi.org/bse.pnl.gov/bse/portal.
  15. Dogonadze, R.R. and Kuznetsov, A.M., Kinetics of heterogeneous chemical reactions in solutions, Itogi Nauki Tekhn., Ser. Kinet. Katal., 1978, vol. 5, p. 223.
  16. Popova, A.V., Kremenetsky, V.G., and Kuznetsov, S.A., Intervalence charge transfer of the Nb(V)/Nb(IV) redox couple in alkali chloride melts: experiment and quantum-chemical calculations, J. Electrochem. Soc., 2017, vol. 164, no. 8, p. H5001.
  17. Popova, A.V. and Kuznetsov, S.A., Standard charge transfer rate constants for Nb(V)/Nb(IV) redox pairs in fluoride melts, Russ. J. Electrochem., 2012, vol. 48, no. 1, p. 93.