Electrochemical Determination of Cisplatin at Modified Carbon Paste Electrode with Graphene Nano Sheets/Gold Nano Particles and a Hydroquinone Derivative in Biological Samples

 Siavash Sazideh Siavash Sazideh ,  Masoud Reza Shishehbore Masoud Reza Shishehbore
Российский электрохимический журнал
Abstract / Full Text

The present research dealt with using a carbon paste electrode (CPE) modified by gold nano-particles (AuNPs) graphene nano-sheets (GNs) and 4-hydroxy-2-(triphenylphosphonio) phenolate (HTP) in order to determine of cisplatin. The nano-composite exhibited excellent electrocatalytic activity for the determination of cisplatin by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. CV measurements were used to determine the kinetic parameters including electron transfer coefficient (α) and heterogeneous rate constant (k′) for cisplatin oxidation at the surface of modified electrode, which were 0.39 and (1.23 ± 0.17) × 10–3 cm s–1, respectively. At pH 7.0, cisplatin oxidation at the surface of modified electrode (HTP–AuNPs/GNs–CPE) was down at a potential of ~410 mV less than that of an unmodified electrode (CPE). According to DPV experiments, cisplatin oxidation ranged from 1.0 to 120.0 µM and limit of detection of 0.88 µM. The modified electrode showed acceptable function to detect cisplatin in biological samples by standard addition method.

Author information
  • Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran

    Siavash Sazideh &  Masoud Reza Shishehbore

  1. Ghanghoria, R., Kesharwani, P., Tekade, R.K., and Jain, N.K., Targeting luteinizing hormone-releasing hormone: a potential therapeutics to treat gynecological and other cancers, J. Control. Release, 2018, vol. 26, p. 277.
  2. Blandino, G. and Di Agostino, S., New therapeutic strategies to treat human cancers expressing mutant p53 proteins, J. Exp. Clin. Cancer Res., 2018, vol. 37, p. 30.
  3. Albright, B.B., Delgado, M.K., Latif, N.A., Giuntoli, R.L., Ko, E.M., and Haggerty, A.F., Treat and release emergency department utilization by patients with gynecologic cancers: national estimates and trends, Gynecol. Oncol., 2018, vol. 149, p. 141.
  4. Moradi-Marjaneh, R.S., Hassanian, M., Hasanzadeh, M., Rezayi, M., Maftouh, M., Mehramiz, M., and Avan, A., Therapeutic potential of toll like receptors in treatment of gynecological cancers, IUBMB Life, 2019, vol. 71, p. 549.
  5. Fymat, A.L., Harnessing the immune system to treat cancers and neurodegenerative diseases, J. Clin. Res. Neurol., 2018, vol. 1, p. 1.
  6. Lim, W.A. and June, C.H., The principles of engineering immune cells to treat cancer, Cell, 2017, vol. 168, p. 724.
  7. Shishehbore, M.R., Zare, H.R., and Nematollahi, D., Electrocatalytic determination of morphine at the surface of a carbon paste electrode spiked with a hydroquinone derivative and carbon nanotubes, J. Electroanal. Chem., 2012, vol. 665, p. 45.
  8. Promphet, N., Rattanarat, P., Rangkupan, R., Chailapakul, O., and Rodthongkum, N., An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium, Sens. Actuators B: Chem., 2015, vol. 207, p. 526.
  9. Santos, V.B., Luiz Fava, E., Miranda Curi, N.S., Censi Faria, R., Guerreiro, T.B., and Fatibello-Filho, O., An electrochemical analyzer for in situ flow determination of Pb(II) and Cd(II) in lake water with on-line data transmission and a global positioning system, Anal. Methods, 2015, vol. 7, p. 3105.
  10. Liua, H., Wana, X., Liub, T., Lib, Y., and Yaob, Y., Cascade sensitive and selective fluorescence OFF-ON-OFF sensor for Cr3+ cation and F anion, Sens. Actuators B: Chem., 2014, vol. 200, pp. 191–197.
  11. Abdel Aziza, A.A. and Sedab, S.H., Detection of trace amounts of Hg2+ in different real samples based on immobilization of novel unsymmetrical tetradentate schiff base within PVC membrane, Sens. Actuators B: Chem., 2014, vol. 197, p. 155.
  12. Xia, D.H., Wang, H.H., Wang, K., Fu, C.W., and Wang, J.H., A novel electrochemical noise sensor applied to detect food safety, Russ. J. Electrochem., 2014, vol. 50, p. 599.
  13. Zhu, X., Feng, C., Ye, Z., Chen, Y., and Li, G., Fabrication of magneto-controlled moveable architecture to develop reusable electrochemical biosensors, Sci. Rep., 2014, vol. 4, p. 4169.
  14. Shishehbore, M.R., Zare, H.R., Nematollahi, D., and Saber-Tehrani, M., Electrocatalytic oxidation and differential pulse voltammetric determination of hydroxylamine using a 4-hydroxy-2-(triphenyl phosphoio) phenolate carbon nanotubes modified electrode, Anal. Methods, 2011, vol. 3, p. 306.
  15. Khoshroo, A., Hosseinzadeh, L., Sobhani-Nasab, A., Rahimi-Nasrabadi, M., and Ehrlich, H., Development of electrochemical sensor for sensitive determination of oxazepam based on silver–platinum core–shell nanoparticles supported on graphene, J. Electroanal. Chem., 2018, vol. 823, p. 61.
  16. Safaei, M., Beitollahi, H., and Shishehbore, M.R., Synthesis and characterization of NiFe2O4 nanoparticles using the hydrothermal method as magnetic catalysts for electrochemical detection of norepinephrine in the presence of folic acid, J. Chin. Chem. Soc., 2019, vol. 66, p. 1.
  17. de Oliveira Silva, R., da Silva, É.A., Fiorucci, A.R., and Ferreira, V.S., Electrochemically activated multi-walled crbon nanotubes modified screen-printed electrode for voltammetric determination of sulfentrazone, J. Electroanal. Chem., 2019, vol. 835, p. 220.
  18. Brock, P.R., Maibach, R., Childs, M., Rajput, K., Roebuck, D., Sullivan, M.J., and Brichard, B., Sodium thiosulfate for protection from cis-platin-induced hearing loss, New Engl. J. Med., 2018, vol. 378, p. 2376.
  19. Zhai, J., Shen, J., Xie, G., Wu, J., He, M., Gao, L., and Shen, L., Cancer-associated fibroblasts-derived IL-8 mediates resistance to cisplatin in human gastric cancer, Cancer Lett., 2019, vol. 454, p. 37.
  20. Rosli, N.F., Fojtu, M., Fisher, A.C., and Pumera, M., Graphene oxide nanoplatelets potentiate anticancer effect of cisplatin in human lung cancer cells, Langmuir, 2019, vol. 35, p. 3176.
  21. Minasian, L.M., Frazier, A.L., Sung, L., O’Mara, A., Kelaghan, J., Chang, K.W., and Freyer, D.R., Prevention of cis-platininduced hearing loss in children: informing the design of future clinical trials, Cancer Med., 2018, vol. 7, p. 2951.
  22. Huang, Z., Timerbaev, A.R., Keppler, B.K., and Hirokawa, T., Determination of cisplatin and its hydrolytic metabolite in human serum by capillary electrophoresis techniques, J. Chromatogr. A, 2006, vol. 1106, p. 75.
  23. Bosch, M.E., Sánchez, A.R., Rojas, F.S., and Ojeda, C.B., Analytical methodologies for the determination of cisplatin, J. Pharm. Biomed. Anal., 2008, vol. 47, p. 451.
  24. Tafazoli, H., Safaei, M., and Shishehbore, M.R., A new sensitive method for quantitative determination of cisplatin in biological samples by kinetic spectrophotometry, Anal. Sci., 2020, vol. 36, no. 10, p. 1217.
  25. Saber, M.M., Al-Mahallawi, A.M., Nassar, N.N., Stork, B., and Shouman, S.A., Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes, BMC Cancer, 2018, vol. 18, p. 822.
  26. Verschraagen, M., van der Born, K., Zwiers, T.H.U., and van der Vijgh, W.J.F., Simultaneous determination of intact Cisplatin and its metabolite monohydrated Cisplatin in human plasma, J. Chromatogr. B, 2002, vol. 772, p. 273.
  27. Ye, L., Xiang, M., Lu, Y., Gao, Y., and Pang, P., Electrochemical determination of Cisplatin in serum at graphene oxide/multi-walled carbon nanotubes modified glassy carbon electrode, Int. J. Electrochem. Sci., 2014, vol. 9, p. 1537.
  28. Bosch, M.E., Sánchez, A.J.R., Rojas, F.S., and Ojeda, C.B., Analytical methodologies for the determination of cis-platin, J. Pharm. Biomed. Anal., 2008, vol. 47, p. 451.
  29. Razzaq, H., Qureshi, R., Cabo-Fernandez, L., and Schiffrin, D.J., Synthesis of Au clusters-redox centre hybrids by diazonium chemistry employing double layer charged gold nanoparticles, J. Electroanal. Chem., 2018, vol. 819, p. 9.
  30. Zhang, Y., Chu, G., Guo, Y., Zhao, W., Yang, Q., and Sun, X., An electrochemical biosensor based on au nanoparticles decorated reduced graphene oxide for sensitively detecting of Hg2+, J. Electroanal. Chem., 2018, vol. 824, p. 201.
  31. Chen, H., Zhou, K., and Zhao, G., Gold nanoparticles: from synthesis, properties to their potential application as colorimetric sensors in food safety screening, Trends Food Sci. Technol., 2018, vol. 78, p. 83.
  32. Kanso, H., Pankratova, G., Bollella, P., Leech, D., Hernandez, D., and Gorton, L., Sunlight photocurrent generation from thylakoid membranes on gold nanoparticle modified screen-printed electrodes, J. Electroanal. Chem., 2018, vol. 816, p. 259.
  33. Safaei, M., Beitollahi, H., and Shishehbore, M.R., Simultaneous determination of epinephrine and folic acid using the Fe3O4@SiO2/GR nanocomposite modified graphite, Russ. J. Electrochem., 2018, vol. 54, p. 851.
  34. Liu, H., Liu, Y., and Zhu, D., Chemical doping of graphene, J. Mater. Chem., 2011, vol. 21, p. 3335.
  35. Chen, W., Chen, S., and Dong, C.Q., Surface transfer P-type doping of epitaxial graphene, J. Am. Chem. Soc., 2007, vol. 129, p. 10418.
  36. Giovannetti, G., Khomyakov, P.A., and Brocks, G., Doping graphene with metal contacts, Phys. Rev. Lett., 2008, vol. 101, p. 3.
  37. Nematollahi, D., Tammari, E., and Esmaili, R., Investigation of electrochemically induced conjugate addition reaction: a facile approach to preparation of Schonberg adducts, J. Electroanal. Chem., 2008, vol. 621, p. 113.
  38. William, S., Hummers, J., and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.
  39. Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., and Guo, S., Reduction of graphene oxide via L-ascorbic acid, Chem. Commun., 2010, vol. 46, p. 1112.
  40. Rajeshwari, A., Kunal Garg, Elavarasi, M., Chandrasekaran, N., and Mukherjee, A., Interaction of citrate-capped gold nanoparticles with the selected amino thiols for sensing applications, Proc. Natl. Acad. Sci. India B, 2017, vol. 87, p. 23.
  41. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.
  42. Ye, L., Xiang, M., Lu, Y., Gao, Y., and Pang, P., Electrochemical determination of cisplatin in serum at graphene oxide/multi-walled carbon nanotubes modified glassy carbon electrode, Int. J. Electrochem. Sci., 2014, vol. 9, p. 1537.
  43. Skoog, D.A., Holler, F.J., and Nieman, T.A., Principles of Instrumental Analysis, London: Saunders College Publ., 1998.
  44. Petrlova, J., Potesil, D., Zehnalek, J., Sures, B., Adam, V., Trnkova, L., and Kizek, R., Cisplatin electrochemical biosensor, Electrochim. Acta, 2006, vol. 51, p. 5169.
  45. Gholivand, M.B., Ahmadi, E., and Mavaei, M., A novel voltammetric sensor based on graphene quantum dots-thionine/nano-porous glassy carbon electrode for detection of cisplatin as an anti-cancer drug, Sens. Actuators B, 2019, vol. 299, p. 126975.
  46. Materon, E.M., Wong, A., Klein, S.I., Liu, J., and Sotomayor, M.D., Multi-walled carbon nanotubes modified screen-printed electrodes for cisplatin detection, Electrochim. Acta, 2015, vol. 158, p. 271.