Rapid and Sensitive Determination of Hg(II) Using Polarographic Technique and Application to Chlorophytum comosum

Ummihan Taskopran Yilmaz Ummihan Taskopran Yilmaz , Goknur Ozdemir Kum Goknur Ozdemir Kum , Saliha Alan Akman Saliha Alan Akman , Hasim Yilmaz Hasim Yilmaz
Российский электрохимический журнал
Abstract / Full Text

A differential pulse polarographic (DPP) method has been used for the indirect determination of Hg(II). With a known amount of cyanuric acid (CA) in polarography cell (B–R buffer, pH 10.5) was added an unknown Hg(II) sample and the Hg(II) concentration is calculated simply from the decrease in the CA peak after reaction with Hg(II). The linear concentration range was between 20 and 120 μM and limit of detection was calculated to be 6.7 μM. The proposed method was successfully applied to the dried leave samples belong to C. comosum plant. The method was extended to the indirect determination of mercury(II) in C. comosum plant and results were in agreement with that obtained by a spectrometric comparison method (ICP-MS). The sufficiently good recoveries and low standard deviations reflect the high accuracy of developed method.

Author information
  • Department of Chemistry, Gazi University, Polatlí Science and Art Faculty, Polatlí, Ankara, 06900, Turkey

    Ummihan Taskopran Yilmaz, Goknur Ozdemir Kum, Saliha Alan Akman & Hasim Yilmaz

  1. Musarrat, J., Zaidi, A., Khan, M.S., Siddiqui, M.A., and Al-Khedhairy, A.A., Genotoxicity assessment of heavy metal-contaminated soils, in Biomanagement of metal-contaminated soils, Environ. Pollut., 2011, vol. 20, p.323.
  2. Roy, S.P., Overview of heavy metals and aquatic environment with notes on their recovery, Ecoscan, 2010, vol. 4, p.235.
  3. Tchounwou, P.B., Ayensu, W.K., Ninashvili, N., and Sutton, D., Environmental exposure to mercury and its toxicopathologic implications for public health, Environ. Toxicol., 2003, vol. 18, p.149.
  4. Dorea, J.G. and Donangelo, C.M., Early (in uterus and infant) exposure to mercury and lead, Clin. Nutr., 2006, vol. 25, p.369.
  5. Yazdi, A.S., Banihashemi, S., and Es’haghi, Z., Determination of Hg(II) in natural waters by diphenylation by single-drop microextraction: GC, Chromatographia, 2010, vol. 71, p. 1049.
  6. Yazdi, A.S., Ostad, M.A., and Mofazzeli, F., Determination of Hg(II) in environmental water samples using DLLME method prior to GC-FID, Chromatographia, 2013, vol. 76, p.861.
  7. Zhou, Y., Li, Y.S., Meng, X.Y., Zhang, Y.Y., Yang, L., Zhang, J.H., Wang, X.R., Lu, S.Y., Ren, H.L., and Liu, Z.S., Development of an immunochromatographic strip and its application in the simultaneous determination of Hg(II), Cd(II) and Pb(II), Sens. Actuators B, 2013, vol. 183, p.303.
  8. Shi, L., Li, Y., Liu, Z.P., James, T.D., and Long, Y.T., Simultaneous determination of Hg(II) and Zn(II) using a GFP inspired chromophore, Talanta, 2012, vol. 100, p.401.
  9. Chatti, M., Sarkar, S., and Mahalingam, V., Glutathione-modified ultrasmall Ce3+-and Tb3+-doped SrF2 nanocrystals for fluorescent determination of Hg(II) and Pb(II) ions, Microchim. Acta, 2016, vol. 183, p.133.
  10. Parodi, B., Londonio, A., Polla, G., Savio, M., and Smichowski, P., On-line flow injection solid phase extraction using oxidised carbon nanotubes as the substrate for cold vapour-atomic absorption determination of Hg(II) in different kinds of water, J. Anal. Atom. Spectrom., 2014, vol. 29, p.880.
  11. Long, S.E. and Kelly, W.R., Inductively coupled plasma mass spectrometry, Anal. Chem., 2002, vol. 74, p. 1477.
  12. Mahar, M., Tyson, J.F., Neubauer, K., and Grosser, Z., High throughput sample introduction system for the analysis of drinking waters and wastewaters by ICP-MS, J. Anal. Atom. Spectrom., 2008, vol. 23, p. 1204.
  13. Panichlertumpi, B. and Chanthai, S., Ultra-trace determination of Hg(II) in drinking water and local Thai liquors using homogeneous liquid–liquid extraction followed by fluorescence quenching of its ternary complex, Anal. Methods, 2013, vol. 5, p.987.
  14. Gurkan, R., Cepken, T., and Ulusoy, H.I., Surfactantsensitized spectrophotometric determination of Hg(II) in water samples using 2-(2-thiazolylazo)-p-cresol as ligand and cetylpyridinium chloride as canonic surfactant, Turk. J. Chem., 2012, vol. 36, p.159.
  15. Han, D., Kim, Y.R., Oh, J.W., Kim, T.H., Mahajan, R.K., Kim, J.S., and Kim, H., A regenerative electrochemical sensor based on oligonucleotide for the selective determination of mercury(II), Analyst, 2009, vol. 134, p. 1857.
  16. Jiang, B., Yu, L., Li, F., and Xie, J., A dual functional electrochemical “on–off” switch sensor for the detection of mercury(II) and melamine, Sens. Actuators B, 2015, vol. 212, p.446.
  17. Domínguez-Renedo, O., Alonso-Lomillo, M.A., Ferreira-Gonc, L., Alves, and Arcos-Martínez, M.J., Development of urease based amperometric biosensors for the inhibitive determination of Hg(II), Talanta, 2009, vol. 79, vol. 1306.
  18. Said, N.R., Rezayi, M., Narimani, L., Suhana, N., Manan, A., and Alias, Y., A novel potentiometric selfplasticizing polypyrrole sensor based on a bidentate bis-NHC ligand for determination of Hg(II) cation, RSC Adv., 2015, vol. 5, 76263.
  19. Wegner, S.V., Okesli, A., Chen, P. and He, C., Design of an emission ratiometric biosensor from MerR family proteins: A sensitive and selective sensor for Hg2+, Am. Chem. Soc., 2007, vol. 129, p. 3474.
  20. Chai, F., Wang, T., Li, L., Liu, H., Zhang, L., Su, Z., and Wang, C., Fluorescent gold nanoprobes for the sensitive and selective detection for Hg2+, Nanoscale Res. Lett., 2010, vol. 5, p. 1856.
  21. Huang, C.C., Yang, Z., Lee, K.H., and Chang, H.T., Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II), Angew. Chem. Int. Ed., 2007, vol. 46, p. 6824.
  22. Firooza, A.R., Movahedi, M., and Ensafi, A.A., Selective and sensitive optical chemical sensor for the determination of Hg(II) ions based on tetrathia-12-crown-4 and chromoionophore I, Sens. Actuators B, 2012, vols. 171–172, p.492.
  23. Cheng, X., Li, S., Zhong, A., Qin, J., and Li, Z., New fluorescent probes for mercury(II) with simple structure, Sens. Actuators B: Chem., 2011, vol. 157, p.57.
  24. Afkhami, A., Bagheri, H., Khoshsafar, H., Saber-Tehrani, M., Tabatabaee, M., and Shirzadmehr, A., Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and anew synthesized Schiff base, Anal. Chim. Acta, 2012, vol. 746, p.98.
  25. Wang, F., Wei, X., Wang, C, Zhang, S., and Ye, B., Langmuir–Blodgett film of p-tert-butylthiacalix[4]arene modified glassy carbon electrode as voltammetric sensor for the determination of Hg(II), Talanta, 2010, vol. 80, p. 1198.
  26. Sanchez, A., Morante-Zarcero, S., Perez-Quintanilla, D., Sierra, I., and Hierro, I., Determination of Hg(II) in natural waters using a carbon paste electrode modified with hybrid mesostructured silica nanoparticles, Sens. Actuators B, 2012, vol. 163, p.38.
  27. Liao, Y., Li, Q., Wang, N., and Shao, S., Development of a new electrochemical sensor for determination of Hg(II) based on Bis(indolyl)methane/Mesoporous carbon nanofiber/Nafion/glassy carbon electrode, Sens. Actuators B, 2015, vol. 215, p.592.
  28. Lahrich, S., Manoun, B., and El Muhammedi, M.A., Voltammetric determination of Hg(II) using apatite anion-deficient apatite/graphite composite, Ionics, 2015, vol. 21, p. 2051.
  29. Palanisamy, S., Madhu, R., Chen, S.M., and Ramaraj, S.K., A highly sensitive and selective electrochemical determination of Hg(II) based on an electrochemically activated graphite modified screen-printed carbon electrode, Anal. Methods, 2014, vol. 6, p.8368.
  30. Daud, N., Yusof, N.A., and Nor, S.M.M., Electrochemical characteristic of biotinyl somatostatin-14/nafion modified gold electrode in development of sensor for determination of Hg(II), Int. J. Electrochem. Sci., 2013, vol. 8, p. 10086.
  31. Sar, E., Berber, H., Asçi, B., and Cankurtaran, H., Determination of some heavy metal ions with a carbon paste electrode modified by poly(glycidylmethacrylatemethylmethacrylate-divinylbenzene) microspheres functionalized by 2-aminothiazole, Electroanal., 2008, vol. 20, p. 1533.
  32. Martín-Yerga, D., González-García, M.B., and Costa-García, A., Electrochemical determination of mercury: A review, Talanta, 2013, vol. 116, p. 1091.
  33. Kurmaz, V.A. and Gul’tyai, V.P., Electrode reactions and electroanalysis of organomercury compounds, Russ. Chem. Revs., 2010, vol. 79, p.307.
  34. Kalcher, K., Svancara, I., Buzuk, M., Vytras, K., and Walcarius, A., Electrochemical sensors and biosensors based on heterogeneous carbon materials, Monatshefte Chem., 2009, vol. 140, p.861.
  35. Liu, Z., Hu, J., Tong, S., Cao, Q., and Yuan, H., Colorimetric detection of Hg2+ ions in aqueous media using CA–Au NPs, Spectrochim. Acta A, 2012, vol. 97, p.737.
  36. Yilmaz, U.T. and Yazar, Z., Determination of cyanuric acid in swimming pool water and milk by differential pulse polarography, Clean-Soil Air Water, 2010, vol. 38, p.816.
  37. Huang, C.C. and Chang, H.T., Selective goldnanoparticle-based “Turn-On” fluorescent sensors for detection of mercury(II) in aqueous solution, Anal. Chem., 2006, vol 78, p. 8332.
  38. Du, J., Yin, S., Jiang, L., Ma, B., and Chen, X., A colorimetric logic gate based on free gold nanoparticles and the coordination strategy between melamine and mercury ions, Chem. Commun., 2013, vol. 49, p. 4196.
  39. Norkus, E., Stalnioniene, I., and Crans, D.C., Interaction of pyridine-and 4-hydroxypyridine-2,6-dicarboxylic acids with heavy metal ions in aqueous solutions, Heteroat. Chem., 2003, vol. 14, p.625.
  40. Tanaka, Y., Oda, S., Yamaguchi, H., Kondo, Y., Kojima, C., Ono, 15N–15N J-coupling across Hg(II): Direct observation of Hg(II)-mediated T–T base pairs in a DNA duplex, J. Am. Chem. Soc., 2007, vol. 129, p.244.
  41. Xuan, F., Luo, X., and Hsing, I.M., Conformationdependent exonuclease III activity mediated by metal ions reshuffling on thymine-rich DNA duplexes for an ultrasensitive electrochemical method for Hg2+ detection, Anal. Chem., 2013, vol. 85, p. 4586.
  42. Somer, G., Caliskan, A.C., and Sendil, O., A new and simple procedure for the trace determination of mercury using differential pulse polarography and application to a salt lake sample, Turk. J. Chem., 2015, vol. 39, p. 639.