In situ tracking of hydrodynamic and viscoelastic changes in electrophoretically deposited LiFePO4 electrodes during their charging/discharging

Vadim Dargel Vadim Dargel , Mikhael D. Levi Mikhael D. Levi , Leonid Daikhin Leonid Daikhin , Doron Aurbach Doron Aurbach
Российский электрохимический журнал
Abstract / Full Text

Electrophoretically deposited (EPD) lithium ferrophosphate (LFP) electrodes (LiFePO4) containing either soft Mg(OH)2 or rigid PVdF binders have been fabricated and tested in Li2SO4 aqueous solution. The use of Electrochemical Quartz-Crystal Microbalance with dissipation monitoring (EQCM-D) was shown to be extremely advantageous to distinguish between the effectively viscoelastic and rigid states of LFP and LFP/PVdF electrodes, respectively, based already on the raw EQCM-D (i.e. recording resonant frequency and resonance width changes of the electrode on multiple overtone orders). The approach that we developed for testing composite battery and supercapacitor electrodes is quite general, and includes mechanical characterizations of the electrodes in air, in contact with liquids and electrolyte solutions, and most importantly, during combined electrochemical and mechanical characterization of battery electrodes subjected to Li-ions insertion/extraction. A new theory of hydrodynamic admittance of porous semispherical bumps has been developed and successfully applied for the characterization of rigid porous LFP/PVdF composite electrode in its both intercalated and deintercalated states. We show that the extended Voight-type viscoelastic model describes quantitatively the intercalated and deintercalated states of LFP electrode coating containing soft Mg(OH)2 binder. The approach based on non-gravimetric application of EQCM-D developed in this work is unique and quite promising for in-situ mechanical characterization of a large variety of battery and supercapacitor electrodes for energy-storage devices.

Author information
  • Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel

    Vadim Dargel, Mikhael D. Levi & Doron Aurbach

  • School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, 69978, Israel

    Leonid Daikhin

  1. Amrollahi, P., Krasinski, J.S., Vaidyanathan, R., Tayebi, L., and Vashaee, D., Electrophoretic deposition (EPD): Fundamentals and applications from nano- to micro-scale structures, in Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties and Characterization Techniques, Aliofkhazraei, M., and Makhlouf, A.S.H., Eds, Cham, Springer International Publishing, 2016, pp. 1–27.
  2. Besra, L. and Liu, M., A review on fundamentals and applications of electrophoretic deposition (EPD), Progress Mater. Sci., 2007, vol. 52, pp. 1–61.
  3. Borlaf, M., Colomer, M.T., Cabello, F., Serna, R., and Moreno, R., Electrophoretic deposition of TiO2/Er3+ nanoparticulate sols, J. Phys. Chem. B, 2013, vol. 117, pp. 1556–1562.
  4. Kawakita, M., Kawakita, J., and Sakka, Y., Material properties controlling photocurrent on TiO2 aggregates with plane orientation for dye-sensitized solar cells, J. Nanopart. Res., 2010, vol. 12, pp. 2621–2128.
  5. Santillán, M.J., Quaranta, N.E., and Boccaccini, A.R., Titania and titania–silver nanocomposite coatings grown by electrophoretic deposition from aqueous suspensions, Surf. Coat. Technol., 2010, vol. 205, pp. 2562–2571.
  6. Shinde, K.N., Dhoble, S.J., Swart, H.C., and Park, K., Phosphate Phosphors for Solid-State Lighting, Berlin Heidelberg: Springer, 2012.
  7. Talbot, J.B. and McKittrick, J., Review-Electrophoretic Deposition of Phosphors for Solid-State Lighting, 2016.
  8. Kim, E., Xiong, Y., Cheng, Y., Wu, H.-C., Liu, Y., Morrow, B.H., Ben-Yoav, H., Ghodssi, R., Rubloff, G.W., and Shen, J., Chitosan to connect biology to electronics: Fabricating the bio-device interface and communicating across this interface, Polymers, 2014, vol. 7, pp. 1–46.
  9. Raddaha, N., Cordero-Arias, L., Cabanas-Polo, S., Virtanen, S., Roether, J., and Boccaccini, A., Electrophoretic deposition of chitosan/h-BN and chitosan/h- BN/TiO2 composite coatings on stainless steel (316L) substrates, Materials, 2014, vol. 7, pp. 1814–1829.
  10. Zaman, A.C., Üstündağ, C.B., Kaya, F., and Kaya, C., Synthesis and electrophoretic deposition of hydrothermally synthesized multilayer TiO2 nanotubes on conductive filters, Mater. Lett., 2012, vol. 66, pp. 179–181.
  11. Fayette, M., Nelson, A., and Robinson, R.D., Electrophoretic deposition improves catalytic performance of Co3O4 nanoparticles for oxygen reduction/oxygen evolution reactions, J. Mater. Chem. A, 2015, vol. 3, pp. 4274–4283.
  12. Boccaccini, A.R., Cho, J., Roether, J.A., Thomas, B.J., Minay, E.J., and Shaffer, M.S., Electrophoretic deposition of carbon nanotubes, Carbon, 2006, vol. 44, pp. 3149–3160.
  13. Boccaccini, A.R., Roether, J.A., Thomas, B.J., Shaffer, M.S., Chavez, E., Stoll, E., and Minay, E.J., The electrophoretic deposition of inorganic nanoscaled materials–A review, J. Ceram. Soc. Japan, 2006, vol. 114, pp. 1–14.
  14. Du, C. and Pan, N., High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition, Nanotechnology, 2006, vol. 17, p. 5314.
  15. Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P.-L., and Simon, P., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotechnol., 2010, vol. 5, pp. 651–654.
  16. Sugimoto, W., Yokoshima, K., Ohuchi, K., Murakami, Y., and Takasu, Y., Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors, J. Electrochem. Soc., 2006, vol. 153, pp. A255–A260.
  17. Kanamura, K., Goto, A., Hamagami, J.i., and Umegaki, T., Electrophoretic fabrication of positive electrodes for rechargeable lithium batteries, Electrochem. Solid-State Lett., 2000, vol. 3, pp. 259–262.
  18. Mazor, H., Golodnitsky, D., Burstein, L., Gladkich, A., and Peled, E., Electrophoretic deposition of lithium iron phosphate cathode for thin-film 3D-microbatteries, J. Power Sources, 2012, vol. 198, pp. 264–272.
  19. Arnau, A., A Review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids, Sensors, 2008, vol. 8, pp. 370–411.
  20. Eisele, N.B., Andersson, F.I., Frey, S., and Richter, R.P., Viscoelasticity of thin biomolecular films: A case study on nucleoporin phenylalanine-glycine repeats grafted to a histidine-tag capturing QCM-D sensor, Biomacromolecules, 2012, vol. 13, pp. 2322–2332.
  21. Hillman, A.R., Efimov, I., and Ryder, K.S., Timescale- and temperature-dependent mechanical properties of viscoelastic poly (3,4-ethylenedioxythiophene) films, J. Am. Chem. Soc., 2005, vol. 127, pp. 16611–16620.
  22. Kanazawa, K. and Cho, N.-J., Quartz crystal microbalance as a sensor to characterize macromolecular assembly dynamics, J. Sensors, 2009, vol. 2009.
  23. Marx, K.A., Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution–surface interface, Biomacromolecules, 2003, vol. 4, pp. 1099–1120.
  24. Reviakine, I., Johannsmann, D., and Richter, R.P., Hearing what you cannot see and visualizing what you hear: Interpreting quartz crystal microbalance data from solvated interfaces, Anal. Chem., 2011, vol. 83, pp. 8838–8848.
  25. Voinova, M.V., Rodahl, M., Jonson, M., and Kasemo, B., Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach, Physica Scripta, 1999, vol. 59, p. 391.
  26. Shpigel, N., Levi, M.D., Sigalov, S., Girshevitz, O., Aurbach, D., Daikhin, L., Pikma, P., Marandi, M., Janes, A., Lust, E., Jackel, N., and Presser, V., In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes, Nat. Mater., 2015, vol. 16, pp. 570–575.
  27. Daikhin, L., Gileadi, E., Katz, G., Tsionsky, V., Urbakh, M., and Zagidulin, D., Influence of roughness on the admittance of the quartz crystal microbalance immersed in liquids, Anal. Chem., 2002, vol. 74, pp. 554–561.
  28. Daikhin, L., Sigalov, S., Levi, M.D., Salitra, G., and Aurbach, D., Quartz crystal impedance response of nonhomogenous composite electrodes in contact with liquids, Anal. Chem., 2011, vol. 83, pp. 9614–9621.
  29. Daikhin, L. and Urbakh, M., Effect of surface film structure on the quartz crystal microbalance response in liquids, Langmuir, 1996, vol. 12, pp. 6354–6360.
  30. Levi, M.D., Daikhin, L., Aurbach, D., and Presser, V., Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review, Electrochem. Commun., 2016, vol. 67, pp. 16–21.
  31. Levi, M.D., Sigalov, S., Salitra, G., Elazari, R., Aurbach, D., Daikhin, L., and Presser, V., In situ tracking of ion insertion in iron phosphate olivine electrodes via electrochemical quartz crystal admittance, J. Phys. Chem. C, 2013, vol. 117, pp. 1247–1256.
  32. Urbakh, M. and Daikhin, L., Surface morphology and the quartz crystal microbalance response in liquids, Colloids Surf. A: Phys. Eng. Aspects, 1998, vol. 134, pp. 75–84.
  33. Levich, V.G. and Spalding, D.B., Physicochemical Hydrodynamics: V.G. Levich Festschrift, Advance Publications, 1977.
  34. Johannsmann, D., The Quartz Crystal Microbalance in Soft Matter Research, Springer, 2014.
  35. Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Zeitschrift für physik, 1959, vol. 155, pp. 206–222.
  36. Kanazawa, K.K. and Gordon, J.G., The oscillation frequency of a quartz resonator in contact with liquid, Analytica Chim. Acta, 1985, vol. 175, pp. 99–105.
  37. Levi, M.D., Lukatskaya, M.R., Sigalov, S., Beidaghi, M., Shpigel, N., Daikhin, L., Aurbach, D., Barsoum, M.W., and Gogotsi, Y., Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements, Adv. Energy Mater., 2014, p. 1400815.
  38. Levi, M.D., Salitra, G., Levy, N., Aurbach, D., and Maier, J., Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage, Nat. Mater., 2009, vol. 8, pp. 872–875.
  39. Levi, M.D., Sigalov, S., Aurbach, D., and Daikhin, L., In situ electrochemical quartz crystal admittance methodology for tracking compositional and mechanical changes in porous carbon electrodes, J. Phys. Chem. C, 2013, vol. 117, pp. 14876–14889.
  40. Levi, M.D., Sigalov, S., Salitra, G., Aurbach, D., and Maier, J., The effect of specific adsorption of cations and their size on the charge-compensation mechanism in carbon micropores: The role of anion desorption, Chem. Phys. Chem., 2011, vol. 12, pp. 854–862.
  41. Levi, M.D., Sigalov, S., Salitra, G., Elazari, R., and Aurbach, D., Assessing the solvation numbers of electrolytic ions confined in carbon nanopores under dynamic charging conditions, J. Phys. Chem. Lett., 2011, vol. 2, pp. 120–124.
  42. De Beer, E., Duval, J., and Meulenkamp, E., Electrophoretic deposition: A quantitative model for particle deposition and binder formation from alcohol-based suspensions, J. Colloid Interface Sci., 2000, vol. 222, pp. 117–124.
  43. Selvam, P., Viswanathan, B., and Srinivasan, V., XPS and XAES studies on hydrogen storage magnesiumbased alloys, Int. J. Hydrogen Energy, 1989, vol. 14, pp. 899–902.
  44. Boukamp, B.A., A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems, Solid State Ionics, 1986, vol. 20, pp. 31–44.
  45. Landau, L. and Lifshitz, E.M., Theoretical Physics, vol. 6: Hydrodynamics, Moscow: Nauka, 1986.