Interphase-exchange processes at the interface of fluorine-conducting solid electrolyte with alkaline solutions

M. S. Turaeva M. S. Turaeva , I. V. Tarasenkova I. V. Tarasenkova , M. M. Urchukova M. M. Urchukova
Российский электрохимический журнал
Abstract / Full Text

Kinetics of fluorideion exchange at the interface between a LaF3:Eu2+ single crystal and solution with different pF and pH is studied by the galvanostatic and potentiometric methods and also by impedance spectroscopy. Anodic galvanostatic transients are linearized in the coordinates ln (η–ηmax) vs. t, which suggests that the exchange rate in alkaline solutions is limited by surface diffusion of fluorine adions. The surface concentration of fluorine adions с 0 and the surface diffusion flow ν 0 are assessed. Impedance spectroscopy studies of the exchange processes indicate that the charge-transfer resistance R F and the heterogeneous reaction resistance R P increase with the increase in the рН of the fluoride-containing solution and also with the increase in the time of exposure of the fluoride-selective electrode membrane in a neutral solution with pH 6.4 and the high (pF 2) content of fluorides.

Author information
  • Agrophysical Institute, St. Petersburg, 195220, Russia

    M. S. Turaeva & I. V. Tarasenkova

  • OOO Research Company Volta, St. Petersburg, 190020, Russia

    M. M. Urchukova

  1. Malde, M.K., Bjorvatn, K., and Julshamn, K., Food Chem., 2001, vol. 73, p. 373.
  2. Brali, M., Radi, N., Brini, S., and Generali, E., Talanta, 2001, vol. 55, p. 581.
  3. Osnovy analiticheskoi khimii (Fundamentals of Analytical Chemistry), Zolotov, Yu.A., Ed., Moscow: Akademiya, 2010.
  4. Sun, Z., West, S., Wen, X., and d’Heilly, J., US Patent 20070199816 A1, 2007.
  5. Camman, K. and Rechnitz, G.A., Anal. Chem., 1976, vol. 48, p. 856.
  6. Koryta, J. and Stulik, K., Ion Selective Electrodes, Cambridge (UK): Cambridge University, 1983; translated into Russian.
  7. Ion-Selective Electrodes, Durst, R.A., Ed., NBS Special Publication 314, Washington: US Government, 1969; translated into Russian.
  8. Lyalin, O.O. and Turaeva, M.S., Elektrokhimiya, 1990, vol. 26, p. 1450.
  9. Damaskin, B.B. and Petrii, O.A., Vvedenie v elektrokhimicheskuyu kinetiku (Introduction into Electrochemical Kinetics), Moscow: Vysshaya shkola, 1983.
  10. Bockris, J. O’M. and Damjanovic, I.A., in Modern Aspects of Electrochemistry, vol. 3, Bockris, J.O’M. and Conway, B.E., Eds., London: Batterworths, 1964; translated into Russian.
  11. Dracka, O., Collect. Czech. Chem. Commun., 1969, vol. 34, no. 9, p. 2627.
  12. Vetter, K.J., Elektrochemische Kinetics, Berlin: Springer-Verlag, 1961; translated into Russian.
  13. Ukshe, E.A. and Bukun, N.G., Tverdye elektrolity (Solid Electrolytes), Moscow: Nauka, 1977.
  14. Grafov, B.M. and Ukshe, E.A., Elektrokhimicheskie tsepi peremennogo toka (Electrochemical Alternating Current Circuits), Moscow: Nauka, 1973.
  15. Buck, R.P., Ion-Sel. Electrode Rev., 1982, vol. 4, p. 3.
  16. Gurevich, Yu.Ya., Tverdye elektrolity (Solid Electrolytes), Moscow: Nauka, 1986.
  17. Stahr, H.M. and Clardy, D.O., Anal. Lett., 1973, vol. 6, p. 211.
  18. Armstrong, R.D., Dickison, T., and Willis, P.M., J. Electroanal. Chem., 1973, vol. 48, p. 43.
  19. Mertens, J., Van Den Winkel P., and Vereecken, J., Bioelectrochem. Bioenerg., 1978, vol. 5, p. 699.
  20. Van Den Winkel P., Mertens, J., Boel, T., and Vereecken, J., J. Electrochem. Soc., 1977, vol. 124, p. 1338.
  21. Ferry, D., Machtinger, M., and Bauer, D., Analysis, 1984, vol. 12, p. 90.