Статья
2021

Methodology for Determination of the Key Parameters of Conjugated Polymer Electrodeposition, Based on a Combination of Spectroelectrochemistry and Electrochemical Quartz Crystal Microbalance


O. I. Istakova O. I. Istakova , D. V. Konev D. V. Konev , O. A. Goncharova O. A. Goncharova , T. O. Medvedeva T. O. Medvedeva , C. H. Devillers C. H. Devillers , M. A. Vorotyntsev M. A. Vorotyntsev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521030034
Abstract / Full Text

Methodology based on a combination of experimental data obtained by in situ methods of spectroelectrochemistry and electrochemical quartz crystal microbalance has been proposed for determination of the key parameters of the conjugated polymer deposition on the electrode surface via monomer electrooxidation. These parameters are: the current efficiency of the process, the charge spent per an oxidized monomer molecule, the number of monomer units inside the deposited film, and the average number of valence bonds per one monomer unit inside the film. Besides, the electrochemical quartz crystal microbalance method applied to the discharge process of the electropolymerized film allows determining the average charging (oxidation) degree of the monomer unit at the polymerization potential and the degree of the solvent participation in the polymer’s redox transitions. The applicability of the proposed approach has been demonstrated by example of magnesium polyporphine films obtained by oxidation of unsubstituted magnesium porphine on inert electrode in acetonitrile solution at a low potential.

Author information
  • Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia

    O. I. Istakova, D. V. Konev, O. A. Goncharova & M. A. Vorotyntsev

  • Skolkovo Institute of Science and Technology, Moscow, Russia

    T. O. Medvedeva

  • ICMUB, UMR 6302 CNRS-Université de Bourgogne-Franche-Comté, Dijon, France

    C. H. Devillers

  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

    M. A. Vorotyntsev

References
  1. Weidlich, C., Mangold, K.M., and Jüttner, K., EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes, Electrochim. Acta, 2005, vol. 50, no. 7–8, p. 1547.
  2. Xie, Q., Kuwabata, S., and Yoneyama, H., EQCM studies on polypyrrole in aqueous solutions, J. Electroanal. Chem., 1997, vol. 420, nos. 1–2, p. 219.
  3. Syritski, V., Öpik, A., and Forsen, O., Ion transport investigations of polypyrroles doped with different anions by EQCM and CER techniques, Electrochim. Acta, 2003, vol. 48, no. 10, p. 1409.
  4. Bruckenstein, S., Brzezinska, K., and Hillman, A.R., EQCM studies of polypyrrole films. 1. Exposure to aqueous sodium tosylate solutions under thermodynamically permselective conditions, Electrochim. Acta, 2000, vol. 45, no. 22–23, p. 3801.
  5. Mirmohseni, A., Milani, M., and Hassanzadeh, V., Ion exchange properties of polypyrrole studied by electrochemical quartz crystal microbalance (EQCM), Polym. Int., 1999, vol. 48, no. 9, p. 873.
  6. Bruckenstein, S., Brzezinska, K., and Hillman, A.R., EQCM studies of polypyrrole films. Part 2. Exposure to aqueous sodium tosylate solutions under thermodynamically non-permselective conditions, PCCP, 2000, vol. 2, no. 6, p. 1221.
  7. Borjas, R. and Buttry, D.A., EQCM studies of film growth, redox cycling, and charge trapping of n-doped and p-doped poly (thiophene), Chem. Mater., 1991, vol. 3, no. 5, p. 872.
  8. Keita, B., Mahmoud, A., and Nadjo, L., EQCM monitoring of charge transport processes in polyaniline films doped with 12-silicomolybdic heteropolyanion, J. Electroanal. Chem., 1995, vol. 386, no. 1–2, p. 245.
  9. Zhuzhel’skii, D.V., Krylova, V.A., Ivanov, V.D., and Malev, V.V., Mechanism of electrochemical reactions of polyaniline films formed under the conditions of cathodic oxygen reduction, Russ. J. Electrochem., 2009, vol. 45, p. 145.
  10. Widera, J., Skompska, M., and Jackowska, K., The influence of anions on formation, electroactivity, stability and morphology of poly (o-methoxyaniline) films–EQCM studies, Electrochim. Acta, 2001, vol. 46, no. 26–27, p. 4125.
  11. Henderson, M.J., Hillman, A.R., and Vieil, E., A combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD) study of a poly (o-toluidine) modified electrode in perchloric acid solution, J. Electroanal. Chem., 1998, vol. 454, nos. 1–2, p. 1.
  12. Schneider, O., Bund, A., Ispas, A., Borissenko, N., Zein El Abedin, S., and Endres, F., An EQCM study of the electropolymerization of benzene in an ionic liquid and ion exchange characteristics of the resulting polymer film, J. Phys. Chem. B, 2005, vol. 109, no. 15, p. 7159.
  13. Efimov, I., Winkels, S., and Schultze, J.W., EQCM study of electropolymerization and redox cycling of 3,4-polyethylenedioxythiophene, J. Electroanal. Chem., 2001, vol. 499, no. 1, p. 169.
  14. Malev, V.V., Kondratiev, V.V., and Timonov, A.M., Polymer Modified Electrodes (in Russian), Saint Petersburg: Nestor-History, 2012. p. 201–206.
  15. Eliseeva, S.N., Babkova, T.A., and Kondratiev, V.V., Mass tranfer of ions and solvent at redox processes in poly-3,4-ethylenedioxythiophene films, Russ. J. Electrochem., 2009, vol. 45, p. 152.
  16. Kondratiev, V.V., Levin, O.V., and Malev, V.V., Charge transfer and electrochemical reactions at electrodes modified with pristine and metal-containing films of conducting polymers, in Advances in Conducting Polymers Research, Michaelson, L., Ed., N.Y.: Nova Science Publishers Inc., 2014, p. 79.
  17. Kurdakova, V.V., Antonov, N.G., Malev, V.V., and Kondrat’ev, V.V., Transport of ionic charge and solvent in poly (3-octylthiophene) films: An electrochemical quartz crystal microbalance study, Russ. J. Electrochem., 2006, vol. 42, p. 299.
  18. Kondratiev, V.V., Pogulaichenko, N.A., Hui, S., Tolstopjatova, E.G., and Malev, V.V., Electroless deposition of gold into poly-3,4-ethylenedioxythiophene films and their characterization performed in chloride-containing solutions, J. Solid State Electrochem., 2012, vol. 16, no. 3, p. 1291.
  19. Kondratiev, V.V., Babkova, T.A., and Tolstopjatova, E.G., PEDOT-supported Pd nanoparticles as a catalyst for hydrazine oxidation, J. Solid State Electrochem., 2013, vol. 17, no. 6, p. 1621.
  20. Kondratiev, V.V., Babkova, T.A., and Eliseeva, S.N., Structure and electrochemical properties of composite films based on poly-3, 4-ethylenedioxythiophene with metallic palladium inclusions, Russ. J. Electrochem., 2012, vol. 48, p. 205.
  21. Tolstopyatova, E.G., Pogulyaichenko, N.A., and Kondratiev, V.V., Synthesis and electrochemical properties of composite films based on poly-3,4-ethylenedioxythiophene with inclusions of silver particles, Russ. J. Electrochem., 2014, vol. 50, p. 510.
  22. Zhuzhelskii, D.V., Tolstopjatova, E.G., Volkov, A.I., Eliseeva, S.N., and Kondratiev, V.V., Microgravimetric study of electrochemical properties of PEDOT/WO3 composite films in diluted sulfuric acid, J. Solid State Electrochem., 2019, vol. 23, no. 12, p. 3275.
  23. Nizhegorodova, A.O., Eliseeva, S.N., Tolstopjatova, E.G., Láng, G.G., Zalka, D., Ujvári, M., and Kondratiev, V.V., EQCM study of redox properties of PEDOT/MnO2 composite films in aqueous electrolytes, J. Solid State Electrochem., 2018, vol. 22, no. 8, p. 2357.
  24. Kondratiev, V.V., Malev, V.V., and Eliseeva, S.N., Composite electrode materials based on conducting polymers loaded with metal nanostructures, Russ. Chem. Rev., 2016, vol. 85, p. 14.
  25. Jusys, Z., Massong, H., and Baltruschat, H., A New Approach for Simultaneous DEMS and EQCM: Electro-oxidation of Adsorbed CO on Pt and Pt–Ru, J. Electrochem. Soc., 1999, vol. 146, no. 3, p. 1093.
  26. Lyon, L.A. and Hupp, J.T., Energetics of semiconductor electrode/solution interfaces: EQCM evidence for charge-compensating cation adsorption and intercalation during accumulation layer formation in the titanium dioxide/acetonitrile system, J. Phys. Chem., 1995, vol. 99, no. 43, p. 15718.
  27. Levi, M.D., Levy, N., Sigalov, S., Salitra, G., Aurbach, D., and Maier, J., Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons, J. Amer. Chem. Soc., 2010, vol. 132, no. 38, p. 13220.
  28. Konev, D.V., Istakova, O.I., Sereda, O.A., Shamraeva, M.A., Devillers, C.H., and Vorotyntsev, M.A., In situ UV–visible spectroelectrochemistry in the course of oxidative monomer electrolysis, Electrochim. Acta, 2015, vol. 179, p. 315.
  29. Vorotyntsev, M.A., Konev, D.V., Devillers, C.H., Bezverkhyy, I., and Heintz, O., Magnesium(II) polyporphine: The first electron-conducting polymer with directly linked unsubstituted porphyrin units obtained by electrooxidation at a very low potential, Electrochim. Acta, 2010, vol. 55, no. 22, p. 6703.
  30. Vorotyntsev, M.A., Konev, D.V., Devillers, C.H., Bezverkhyy, I., and Heintz, O., Electroactive polymeric material with condensed structure on the basis of magnesium(II) polyporphine, Electrochim. Acta, 2011, vol. 56, no. 10, p. 3436.
  31. Konev, D.V., Devillers, C.H., Lizgina, K.V., Zyubina, T.S., Zyubin, A.S., Maiorova-Valkova, L.A., and Vorotyntsev, M.A., Synthesis of new electroactive polymers by ion-exchange replacement of Mg(II) by 2H+ or Zn(II) cations inside Mg(II) polyporphine film, with their subsequent electrochemical transformation to condensed-structure materials, Electrochim. Acta, 2014, vol. 122, p. 3.
  32. Konev, D.V., Lizgina, K.V., Khairullina, D.K., Shamraeva, M.A., Devillers, C.H., and Vorotyntsev, M.A., Preparation of cobalt polyporphine and its catalytic properties in oxygen electroreduction, Russ. J. Electrochem., 2016, vol. 52, p. 778.
  33. Rolle, S.D., Konev, D.V., Devillers, C.H., Lizgina, K.V., Lucas, D., Stern, C., Herbst, F., Heintz, O., and Vorotyntsev, M.A., Efficient synthesis of a new electroactive polymer of Co(II) porphine by in-situ replacement of Mg(II) inside Mg(II) polyporphine film, Electrochim. Acta, 2016, vol. 204, p. 276.
  34. Istakova, O.I., Konev, D.V., Zyubin, A.S., Devillers, C.H., and Vorotyntsev, M.A., Electrochemical route to Co(II) polyporphine, J. Solid State Electrochem., 2016. vol. 20, no. 11, p. 3189.
  35. Konev, D.V., Istakova, O.I., Dembinska, B., Skunik-Nuckowska, M., Devillers, C.H., Heintz, O., Kulesza, P.J., and Vorotyntsev, M.A., Electrocatalytic properties of manganese and cobalt polyporphine films toward oxygen reduction reaction, J. Electroanal. Chem., 2018, vol. 816, p. 83.
  36. Hillman, A.R., Daisley, S.J., and Bruckenstein, S., Ion and solvent transfers and trapping phenomena during n-doping of PEDOT films, Electrochim. Acta, 2008, vol. 53, no. 11, p. 3763.
  37. Hillman, A.R., Ryder, K.S., Zaleski, C.J., Fullarton, C., and Smith, E.L., Ion transfer mechanisms accompanying p-doping of poly (3,4-ethylenedioxythiophene) films in deep eutectic solvents, Z. Phys. Chem., 2012, vol. 226, no. 9–10, p. 1049.
  38. Vorotyntsev, M.A., Vieil, E., and Heinze, J., Ionic exchange of the polypyrrole film with the PC lithium perchlorate solution during the charging process, Electrochim. Acta, 1996, vol. 41, no. 11–12, p. 1913.
  39. Levi, M.D., Lopez, C., Vieil, E., and Vorotyntsev, M.A., Influence of ionic size on the mechanism of electrochemical doping of polypyrrole films studied by cyclic voltammetry, Electrochim. Acta, 1997, vol. 42, no. 5, p. 757.
  40. Vorotyntsev, M.A., Vieil, E., and Heinze, J., Charging process in polypyrrole films: effect of ion association, J. Electroanal. Chem., 1998, vol. 450, no. 1, p. 121.
  41. Konev, D.V., Devillers, C.H., Lizgina, K.V., Baulin, V.E., and Vorotyntsev, M.A., Electropolymerization of non-substituted Mg(II) porphine: Effects of proton acceptor addition, J. Electroanal. Chem., 2015, vol. 737, p. 235.
  42. Heinze, J.R. and Bilger, R., Ion movements during redox switching of polypyrrole–experiment and simulation, Ber. Bunsenges. Phys. Chem., 1993, vol. 97, p. 502.
  43. Skompska, M., Vorotyntsev, M.A., Goux, J., Moise, C., Heinz, O., Cohen, Y.S., Levi, M.D., Gofer, Y., Salitra, G., and Aurbach, D., Mechanism of redox transformation of titanocene dichloride centers immobilized inside a polypyrrole matrix–EQCM and XPS evidences, Electrochim. Acta, 2005, vol. 50, p. 1635.
  44. Vorotyntsev, M.A., Zinovyeva, V.A., and Konev, D.V., Mechanisms of electropolymerization and redox activity: fundamental aspects, in Electropolymerization: concepts, materials and applications, Cosnier, S. and Karyakin, A., Eds., Weinheim: Wiley-VCH, 2010, p. 27.