Microwave-Assisted Solvothermal Synthesis of Nanoscaled LiFePO4 with Thinner Thickness along [010] Direction for Pouch-Typed Cell

Zhanjun Guo Zhanjun Guo , Zhiliang Chen Zhiliang Chen
Российский электрохимический журнал
Abstract / Full Text

LiFePO4 nanoparticles have been synthesized by a rapid microwave–solvothermal process at 200°C within 10 min. In spite of the low synthesis temperature, the as-synthesized powders with thinner thickness along [010] direction are highly crystalline. Sample exhibited excellent rate capability and showed good cyclic performance. The short reaction times of just 10 min show the basis for an efficient and time-saving synthesis of nanosized LiFePO4.

Author information
  • Institute of Environmental & Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China

    Zhanjun Guo

  • Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou, 450000, China

    Zhanjun Guo

  • Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou, 450000, China

    Zhanjun Guo

  • Yangzhou Research Academy of Energy and Material, Chinese Academy of Sciences, Yangzhou, 225000, China

    Zhiliang Chen

  1. Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 1997, vol. 144, p. 1188.
  2. Gibot, P., Cabanas, M.C., Laffont, L., Levasseur, S., Carlach, P., Hamelet, S.P., Tarascon, J.M., and Masquslier, C., Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4, Nat. Mater., 2008, vol. 7, p. 741.
  3. Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M., and Armand, M., Electroactivity of natural and synthetic triphylite, J. Power Source, 2001, vol. 97−98, p. 503.
  4. Hu, Y.S., Guo, Y.G., Dominko, R., Gaberscek, M., Jamnik, J., and Maier, J., Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect, Adv. Mater., 2007, vol. 19, p. 1963.
  5. Yuan, S.Q. and Dai K.J., Electrochemical performances of lithium ion batteries from hydrothermally synthesized LiFePO4 and carbon spherules, Russ. J. Electrochem., 2010, vol. 47, no. 12, p. 1389.
  6. Chen, H., Xiang, K.X., Gong, W.Q., and Liu, J.H., Preparation and electrochemical properties of Li0.97Er0.01FePO4/C composite for lithium-ion batteries, Russ. J. Electrochem., 2011, vol. 47, no. 2, p. 217.
  7. Wu, B., Ren, Y., and Li, N., LiFePO4 cathode material, in Electric Vehicles–the Benefits and Barriers, InTech., 2011.
  8. Kang, B. and Ceder, G., Battery materials for ultrafast charging and discharging, Nature, 2009, vol. 458, p. 190.
  9. Komarneni, S., D’Arrigo, M.C., Leonelli, C., and Pellacani, G.C., Microwave-hydrothermal synthesis of nanophase ferrites, J. Am. Ceram. Soc., 1998, vol. 81, p. 3041.
  10. Ellis, B., Wang, H.K., Makahnouk, W.R.M., and Nazar, L.F., Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4, J. Mater. Chem., 2007, vol. 17, p. 3248.
  11. Xiong, R., Sun, F., Chen, Z., and He, H., A datadriven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles, Appl. Energy, 2014, vol. 113, p. 463.
  12. Ivanishchev, A.V., Ushakov, A.V., Ivanishchev, I.A., Churikov, A.V., Mironov, A.V., Fedotov, S.S., Khasanova, N.R., and Antipov, E.V., Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3–based electrode material, Electrochim. Acta, 2017, vol. 230, p. 479.
  13. Ivanishchev, A.V., Churikov, A.V., Ivanishchev, I.A., and Ushakov, A.V., Lithium diffusion in Li3V2(PO4)3–based electrodes: a joint analysis of electrochemical impedance, cyclic voltammetry, pulse chronoamperometry, and chronopotentiometry data, Ionics, 2016, vol. 22, p. 483.