Examples



mdbootstrap.com



 
Статья
2021

Surface Structure and Properties of Niobium Zirconium Alloy After Boron-10 Ion Implantation


Yu. F. IvanovYu. F. Ivanov, V. P. FrolovaV. P. Frolova, A. S. BugaevA. S. Bugaev, B. E. KadlubovichB. E. Kadlubovich, A. G. NikolaevA. G. Nikolaev, E. A. PetrikovaE. A. Petrikova, O. S. TolkachevO. S. Tolkachev, G. Yu. YushkovG. Yu. Yushkov
Российский физический журнал
https://doi.org/10.1007/s11182-021-02393-4
Abstract / Full Text

The boron-10 ion implantation in layers on the core components can provide lower nuclear reactivity due to an abnormally large neutron-capture cross-section during the initial stage of the reactor operation. It is shown that after the boron-10 ion implantation at 22 keV energy with 7∙1016 ion/cm2 fluence, the surface microhardness of E110 zirconium alloy increases from 3 to 3.7 GPa. After the boron-10 ion implantation in the indicated conditions (22 keV energy and 7∙1016 ion/cm2 fluence), the corrosion rate of E110 zirconium alloy in a 1% hydrofluoric acid solution is 1.2–1.4 times lower than that of the nonimplanted alloy. The boron-10 ion implantation is accompanied by such processes as the formation of a subgrain structure in the surface layer of the alloy, the grain size of which ranges within 100–200 nm; the increase in the scalar dislocation density; and the formation of 1.8–2.3 nm nanoparticles of zirconium boride.

Author information
  • Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaYu. F. Ivanov, V. P. Frolova, A. S. Bugaev, A. G. Nikolaev, E. A. Petrikova, O. S. Tolkachev & G. Yu. Yushkov
  • Tomsk State University of Control Systems and Radioelectronics, Tomsk, RussiaV. P. Frolova
  • Tomsk Regional Institute of Educators Professional Development, Tomsk, RussiaB. E. Kadlubovich
References
  1. M. C. Polo, E., Martinez, J. Esteve, and J. Andujar, Diam. Relat. Mater., 8, 423–427 (1999).
  2. D. J. Eaglesham, P. A. Stolk, H. J. Gossmann, and J. M. Poate, Appl. Phys. Lett., 65, 2305–2307 (1994).
  3. H. Schlemm and D. Roth, Surf. Coat. Technol., 114, 81–84 (1999).
  4. J. H. Freeman, Nucl. Instrum. Meth., 22, 306–316 (1963).
  5. V. I. Gushenets, A. S. Bugaev, and E. M. Oks, Prikladnaya fiz., 43, No. 2, 19–24 (2017).
  6. A. G. Nikolaev, E. M. Oks, A. V. Vizir, et al., Rev. Sci. Instrum., 87, 02A902 (2016).
  7. A. G. Nikolaev, E. M. Oks, V. P. Frolova, and G. Yu. Yushkov, Russ. Phys. J., 60, No. 9, 1528–1532 (2018).
  8. A. G. Nikolaev, E. M. Oks, V. P. Frolova, and G. Yu. Yushkov, PZhTF, 41, No. 18, 30–37 (2015).
  9. A. S. Bugaev, A. V. Vizir, V. I. Gushenets, et al., Russ. Phys. J., 62, No. 7, 1117–1122 (2019).
  10. A. Zielinski and S. Sobieszczyk, Int. J. Hydrogen Energ., 36, 8619–8629 (2011).
  11. A. S. Zaimovskii, A. V. Nikulina, and N. G. Reshetnikov, Zirconium Alloys in Nuclear Power Engineering [in Russian], Energoizdat, Moscow (1981).
  12. L. M. Utevskii, Electron Diffraction Technique in Metallurgical Science [in Russian], Metallurgiya, Moscow (1973).