Effect of Dopants on the Lithium Metazirconate Conductivity

A. V. Kalashnova A. V. Kalashnova , S. V. Plaksin S. V. Plaksin , G. Sh. Shekhtman G. Sh. Shekhtman
Российский электрохимический журнал
Abstract / Full Text

Samples from the Li2 – 2xMxZrO3 (M = Ca, Zn), Li2 –xZr1 –xNbxO3, and Li2 +xZr1– xYxO3 systems were synthesized by conventional solid-state reaction. Estimated domains of Li2ZrO3-based solid solutions were established for all above-mentioned systems. The transport properties of the samples (temperature and composition dependences of their conductivity, and the conductivity activation energy) were studied by electrochemical impedance spectroscopy in the temperature range from 300 to 600°С. The most probable lithium-ion migration mechanisms depending on the Li2ZrO3 crystal structure were discussed. According to the obtained results, the synthesized materials are typical solid electrolytes with extrinsic disorder and quite low ionic conductivity (σ ∼ 10–2 –10–5 S cm–1).

Author information
  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620137, Yekaterinburg, Russia

    A. V. Kalashnova, S. V. Plaksin & G. Sh. Shekhtman

  1. Cao, C., Li, Z-B., Wang, X-L., Zhao, X-B., and Han, W.-Q., Recent advances in inorganic solid electrolytes for lithium batteries, Frontiers Energy Research, 2014, vol. 2, p. 25.
  2. Bachman, J.Ch, Muy, S., Girmaud, A., Chang, H.-H., Pour, N., Lux, S.F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., Giordano, L., and Shao-Horn, Y., Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction, Chem. Rev., 2016, vol. 116, no. 1, p. 140.
  3. Zheng, F., Kotobuki, M., Song, S., Lai, M.O., and Lu, L, Review on solid electrolytes for all-solid-state lithium-ion batteries, J. Power Sources, 2018, vol. 389, p. 198.
  4. Robertson, A.D., West, A.R., and Ritchie, A.G., Review of crystalline lithium-ion conductors suitable for high temperature battery applications, Solid State Ionics, 1997, vol. 104, nos. 1–2, p. 1.
  5. Hellstrom, E.E. and Van Gool, W., Constraints for the selection of lithium solid electrolytes, Rev. Chem. Miner., 1980, vol. 17, p.263.
  6. Dong, Y., Zhao, Y., Duan, H., and Huang, J., Electrochemical performance and lithium-ion insertion/extraction mechanism studies on the novel Li2ZrO3 anode materials, Electrochim. Acta, 2015, vol. 161, p. 219.
  7. Miao, X., Ni, H., Zhang, H., Wang, C., Fang, J., and Yang, G., Li2ZrO3  coated  0.4Li2MnO3 · 0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery, J. Power Sources, 2014, vol. 265, p. 147.
  8. Yi, H., Wang, X., Ju, B., Shu, H., Wen, W., Yu, R., Wang, D., and Yang, X., Effective enhancement of electrochemical performance for spherical spinel LiMn2O4 via Li-ion conductive Li2ZrO3 coating, Electrochim. Acta, 2014, vol. 134, p. 143.
  9. Huang, S., Wilson, B., Wang, Bo., Fang, Y., Buffington, K., Stein, A., and Truhlar, G., Y-doped Li8ZrO6: A Li-ion Battery Cathode Material with High Capacity, J. Amer. Chem. Soc., 2015, vol. 137, no. 34, p. 10992.
  10. Huang, S., Wilson, B., Smyrl, W.H., Truhlar, D.G., and Stein, A., Transition-Metal-Doped M-LiZrO (M = Mn, Fe, Co, Ni, Cu, Ce) as High-Specific-Capacity Li-Ion Battery Cathode Materials: Synthesis, Electrochemistry, and Quantum Mechanical Characterization, Chem. Mater., 2016, vol. 28, no. 3, p. 746.
  11. Hellstrom, E.E. and Van Gool, W., Lithium-ion conduction in Li2ZrO3, Li4ZrO4 and LiScO2, Solid State Ionics, 1981, vol. 2, no. 1, p. 59.
  12. Murthy, A.S.R., Gnanasekaran, T., and Jayaraman V., Preparation and characterization of some lithium-ion conductors, Solid State Ionics, 2017, vol. 303, p. 138.
  13. Martel, L.C. and Roth, R.S., Phase-equilibria and crystal-chemistry in ternary oxide system containing Li2O–MO2–Ta2O5 (M = Ti, Sn, Zr, Th), Amer. Ceram. Soc. Bull., 1981, vol. 60, no. 3, p. 376.
  14. Vyers, G.P. and Cordfunke, E.H.P., J. Nucl. Mater., Phase relations in the system Li2O-ZrO2, 1989, vol. 168, nos. 1–2, p. 24.
  15. Enriquez, L.J., Quintana, P., and West, A.R., Compound Formation in the System Li2O-ZrO2, Trans. British Ceram. Soc., 1982, vol. 81, p. 17.
  16. Delmas, C., Maazaz, A., Guillen F., Fouassier, C., Reau, J.M., and Hagenmuller, P., Des conducteurs ioniques pseudo-bidimensionnels: Li8MO6 (M = Zr, Sn), Li7LO6 (L = Nb, Ta) et Li6In2O6, Mat. Res. Bull., 1979, vol. 14, no. 5, p. 619.
  17. Liao, Y., Singh, P., Park, K.S., Li, W., and Goodenough, J.B., Li6Zr2O7 interstitial lithium-ion solid electrolyte, Electrochim. Acta, 2013, vol. 102, p. 446.
  18. Rao, R.P., Reddy, M.V., Adams, S., and Chowdary, B.V.R., Preparation and mobile ion transport studies of Ta and Nb doped Li6Zr2O7 Li-fast ion conductors, Mat. Sci. Eng. B, 2012, vol. 177, no. 5, p. 100.
  19. Pantyukhina, M.I., Shchelkanova, M.S., and Plaksin, S.V., Ionic conduction of Li8 – 2xMgxZrO6 solid solutions, Russ. J. Electrochem., 2010, vol. 46, no. 7, p. 780.
  20. Pantyukhina, M.I., Shchelkanova, M.S., and Plaksin, S.V., Ionic conductivity of Li8 – 2xSrxZrO6, Inorg. Materials, 2012, vol. 48, no. 4, p. 382.
  21. Pantyukhina, M.I., Shchelkanova, M.S., and Plaksin, S.V., Synthesis and electrochemical properties of Li8 –xZr1 –xNbxO6 solid solutions, Phys. Solid State, 2013, vol. 55, no. 4, p. 707.
  22. Andreev, O.L., Pantyukhina, M.I., Antonov, B.D., and Batalov, N.N., Synthesis and Electrical Properties of Lithium Metazirconate, Russ. J. Electrochem., 2000, vol. 36, p. 1335.
  23. Baklanova, Y.V., Zhuravlev, N.A., Maximova, L.G., Denisova, T.A., Leonidova, O.N., Raskovalov, A.A., and Tarakina, N.V., Synthesis and physicochemical properties of Li2MxZr1 –xO3– δ (M = Nb, Ti; x = 0.05, 0.1) solid solutions, Bull. Russ. Acad. Sci.: Physics, 2014, vol. 78, no. 4, p. 320.
  24. Kalashnova, A.V., Plaksin, S.V., Vovkotrub, E.G., and Shekhtman, G.S., Electric Conductivity of Lithium Metazirconate, Russ. J. Electrochem., 2018, vol. 54, no. 9, p. 709.
  25. Pantyukhina, M.I., Kalashnova, A.V., and Plaksin, S.V., Butlerov Communs., 2014, vol. 40, no. 11, p. 132. https://doi.org/jbc-02/14-40-11-132
  26. Quintana, P., Leal, J., Howie, R.A., and West, A.R., Li2ZrO3: A new polymorph with the α-LiFeO2 structure, Mat. Res. Bull., 1989, p. 1385.
  27. Hodeau, J.L., Marezio, M., Santoro, A., and Roth, R.S., Neutron Profile Refinement of the Structures of Li2SnO3 and Li2ZrO3, J. Solid State Chem, 1982, vol. 45, no. 2, p. 170.
  28. Dunstan, M.T., Schlogelhofer, H.L., Griffin, J.M., Dyer, M.S., Gaultois, M.W., Lau, S.Y., Scott, S.A., and Grey, C.P., Ion Dynamics and CO Absorption Properties Nb, Ta and Y-doped Li2ZrO3 Studied by Solid-State NMR, Thermogravimetry and First-Principle Calculations, J. Phys. Chem. C, 2017, vol. 121, no. 40, p. 21877.
  29. Villafuerte-Castrejon, M.E., Kuhilger, C., Ovando, R., Smith, R.I., and West, A.R., New Perovskite Phases in the Systems Li2O–(Nb2O5, Ta2O5)–ZrO2, J. Mater. Chem., 1991, vol. 1, no. 5, p. 747.
  30. Zou, Y. and Petric, A., Preparation and Properties of Yttrium-Doped Lithium Zirconate, J. Electrochem. Soc., 1993, vol. 140, no. 5, p. 1388.
  31. Mather, G.C., Dussarat, C., Etourneau, J., and West, A.R., A review of cation-ordered rock salt superstructure oxides, J. Mater.Chem., 2000, vol. 10, no. 10, p. 2219.
  32. Sherstobitova, E.A., Gubkin, A.F., Bobrikov, I.A., Kalashnova, A.M., and Pantyukhina, M.I., Bottle-necked ionic transport in Li2ZrO3: High temperature neutron diffraction and impedance spectroscopy, Electrochim. Acta, 2016, vol. 209, p. 574.
  33. Anurova, N.A., Blatov, V.A., Ilyushin, G.D., Blatova, O.A., Ivanov-Schits, A.K., and Dem’yanets, L.N., Migration maps of Li+ cations in oxygen-containing compounds, Solid State Ionics, 2008, vol. 179, no. 39, p. 2248.
  34. Blatov, V.A., Ilyushin, G.D., Blatova, O.A., Anurova, N.A., Ivanov-Schits, A.K., and Dem’yanets, L.N., Analysis of migration paths in fast-ion conductors with Voronoi-Dirichlet partition, Acta Cryst. B, 2006, vol. 62, no. 6, p. 1010.
  35. Fedotov, S.S., Kabanov, A.A., Kabanova, N.A., Blatov, A.V., Zhugayevych, A., Abakumov, A.M., Khasanova, N.R., and Antipov, E.V., Crystal Structure and Li-Ion Transport in Li2CoPO4F High-Voltage Cathode Material for Li-Ion Batteries, J. Phys. Chem. C, 2017, vol. 121, no. 6, p. 3194.
  36. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A, 1976, vol. 32, no. 5, p. 751.
  37. Baklanova, Ya.V., Arapova, I.Yu., Buzlukov, A.L., Gerashenko, A.P., Verkhovskii, S.V., Mikhalev, K.N., Denisova, T.A., Shein, I.R., and Maksimova, L.G., Lokalization of vacancies and mobility of lithium ions in Li2ZrO3 as obtained by 6,7Li NMR, J. Solid State Chem., 2013, vol. 208, p. 43.
  38. Pantyukhina, M.I., Andreev, O.L., Antonov, B.D., and Batalov, N.N., Synthesis and electrical Properties of Lithium Zirconates, Russ. J. Inorg. Chem., 2002, vol. 47, no. 11, p. 1778.