Temperature Effects on the Performance of Lithium-Ion and Sodium-Ion Batteries

T. L. Kulova T. L. Kulova , A. M. Skundin A. M. Skundin
Российский электрохимический журнал
Abstract / Full Text


The effect of temperature on the capacity of individual electrodes and entire batteries has been considered in terms of the theory of porous electrodes with doubly distributed parameters.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    T. L. Kulova & A. M. Skundin

  1. Zhang, S.S., Xu, K., and Jow, T.R., The low temperature performance of Li-ion batteries, J. Power Sources, 2003, vol. 115, p. 137.
  2. Shi, P., Fang, F., Luo, D., Yang, L., and Hiranoc, S., A Safe Electrolyte Based on Propylene Carbonate and Non-Flammable Hydrofluoroether for High-Performance Lithium Ion Batteries, J. Electrochem. Soc., 2017, vol. 164, p. A1991.
  3. Smart, M.C., Ratnakumar, B.V., Behar, A., Whitcanack, L.D., Yu, J.-S., and Alamgir, M., Gel polymer electrolyte lithium-ion cells with improved low temperature performance, J. Power Sources, 2007, vol. 165, p. 535.
  4. Aris, A.M. and Shabani, B., An experimental study of a lithium-ion cell operation at low temperature conditions, Energy Procedia, 2017, vol. 110, p. 128.
  5. Singer, J.P. and Birke, K.P., Kinetic study of low temperature capacity fading in Li-ion cells, J. Energy Storage, 2017, vol. 13, p.129.
  6. Li, Q., Jiao, S., Luo, L., Ding, M.S., Zheng, J., Cartmell, S.S., Wang, C.-M., Xu, K., Zhang, J.-G., and Xu, W., Wide-Temperature Electrolytes for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 18826.
  7. Kulova, T.L., Effect of Temperature on Reversible and Irreversible Processes during Lithium Intercalation in Graphite, Russ. J. Electrochem., 2004, vol. 40, p. 1052.
  8. Huang, C.-K., Sakamoto, J. S., Wolfenstine, J., and Surampudia, S., The Limits of Low-Temperature Performance of Li-Ion Cells, J. Electrochem. Soc., 2000, vol. 147, p. 2893.
  9. Zhu, G., Wen, K., Lv, W., Zhou, X., Liang, Y., Yang, F., Chen, Z., Zou, M., Li, J., Zhang, Y., and He, W., Materials insights into low-temperature performances of lithium-ion batteries, J. Power Sources, 2015, vol. 300, p. 29.
  10. Kuz’mina, A.A., Kulova, T.L., Tusseeva, E.K., and Chirkova, E.V., Features of electrodes of lithium-ion batteries at lower temperatures, Russ. J. Electrochem., 2020, vol. 56, p. 899.
  11. Tusseeva, E.K., Kulova, T.L., and Skundin, A.M., Temperature Effect on the Behavior of a Lithium Titanate Electrode, Russ. J. Electrochem., 2018, vol. 54, p. 1186.
  12. Yoon, S.J., Myung, S.T., and Sun, Y.K., Low Temperature Electrochemical Properties of Li[NixCoyMn1 – x – y]O2 Cathode Materials for Lithium-Ion Batteries, J. Electrochem. Soc., 2014, vol. 161, p. A1514.
  13. Tusseeva, E.K., Kulova, T.L., Skundin, A.M., Galeeva, A.K., and Kurbatov, A.P., Temperature Effects on the Behavior of Lithium Iron Phosphate Electrodes, Russ. J. Electrochem., 2019, vol. 55, p. 194.
  14. Rui, X.H., Jin, Y., Feng, X.Y., Zhang, LC., and Chen, C.H., A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries, J. Power Sources, 2011, vol. 196, p. 2109.
  15. Frumkin, A.N., On corrosion process distribution along tube, Zh. Phys. Chem., 1949, vol. 23, p. 1477 (in Russian).
  16. Bagotzky, V.S. and Skundin, A.M., Chemical Power Sources, London: Academic, 1980.
  17. Smart, M.C., Ratnakumar, B.V., and Surampudi, S., Electrolytes for Low-Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates, J. Electrochem. Soc., 1999, vol. 146, p. 486.
  18. Kulova, T.L., Tarnopol’skii, V.A., and Skundin, A.M., The Impedance of Lithium-ion Batteries, Russ. J. Electrochem., 2009, vol. 45, p. 38.
  19. Waldmann, T., Wilka, M., Kasper, M., Fleischhammer, M., and Wohlfahrt-Mehrens, M., Temperature dependent ageing mechanisms in Lithium-ion batteries—A Post-Mortem study, J. Power Sources, 2014, vol. 262, p. 129.
  20. Ponrouch, A. and Palacín, M.R., On the high and low temperature performances of Na-ion battery materials: Hard carbon as a case study, Electrochem. Commun, 2015, vol. 54, p. 51.