Examples



mdbootstrap.com



 
Статья
2020

Stabilization of phosphorus in (1,2,3,4,5-pentaphenylphosphole)palladium


E. O. PentsakE. O. Pentsak, A. S. GalushkoA. S. Galushko, R. R. ShaydullinR. R. Shaydullin, V. P. AnanikovV. P. Ananikov
Российский химический вестник
https://doi.org/10.1007/s11172-020-2887-3
Abstract / Full Text

Our quantum chemical calculations predicted high stability of a palladium complex with 1,2,3,4,5-pentaphenylphosphole (ppp). The ligand, ppp, is unstable in free state and readily oxidized in air when in solution. The complex Pd(ppp) was synthesized and detected by electrospray ionization mass spectrometry. A Fourier transform ion cyclotron resonance mass spectrometry study revealed the presence of the complex in a solution after six months storage of the solution in air, thus demonstrating the possibility to stabilize the phosphorus ligand by complexation with transition metal.

Author information
  • N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian FederationE. O. Pentsak, A. S. Galushko, R. R. Shaydullin & V. P. Ananikov
  • Department of Chemistry, M. V. Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991, Moscow, Russian FederationR. R. Shaydullin & V. P. Ananikov
References
  1. P. C. J. Kamer, P. W. N. M. van Leeuwen, Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis, John Wiley & Sons, Ltd, 2012; DOI: https://doi.org/10.1002/9781118299715.
  2. C. A. Tolman, Chem. Rev., 1977, 3, 313; DOI: https://doi.org/10.1021/cr60307a002.
  3. P. E. Garrou, Chem. Rev., 1985, 3, 171; DOI: https://doi.org/10.1021/cr00067a001.
  4. M. S. Driver, J. F. Hartwig, J. Am. Chem. Soc., 1996, 30, 7217; DOI: https://doi.org/10.1021/ja960937t.
  5. J. P. Wolfe, S. Wagaw, S. L. Buchwald, J. Am. Chem. Soc., 1996, 118, 30, 7215; DOI: https://doi.org/10.1021/ja9608306.
  6. R. W. Friesen, E. M. D. Allouche, Tetrakis(triphenylphosphine)palladium(0), in Encyclopedia of Reagentsfor Organic Synthesis, John Wiley & Sons, Ltd., 2017; DOI: https://doi.org/10.1002/047084289X.rt049.pub2.
  7. S. J. Tereniak, C. R. Landis, S. S. Stahl, ACS Catal., 2018, 8, 3708; DOI: https://doi.org/10.1021/acscatal.8b01009.
  8. S. Takahashi, K. Sonogashira, N. Hagihara, Mem. Inst. Sci. & Ind. Res., Osaka Univ., 1966, 23, 69.
  9. G. Wilke, H. Schott, P. Heimbach, Angew. Chem., Int. Ed., 1967, 6, 92; DOI: https://doi.org/10.1002/anie.196700921.
  10. Y. Wu, Y. Xing, J. Wang, Q. Sun, W. Kong, F. Suzenet, RSC Adv., 2015, 5, 48558; DOI: https://doi.org/10.1039/c5ra06337j.
  11. Y. Kobayashi, R. Kuramoto, Y. Takemoto, Beilstein J. Org. Chem., 2015, 11, 2654; DOI: https://doi.org/10.3762/bjoc.15.276.
  12. Z. Wu, X. Fang, Y. Leng, H. Yao, A. Lin, Adv. Synth. Catal., 2018, 360, 1289; DOI: https://doi.org/10.1002/adsc.201701139.
  13. P. von Ragué Schleyer, H. Jiao, B. Goldfuss, P. K. Freeman, Angew. Chem., Int. Ed., 1995, 34, 337; DOI: https://doi.org/10.1002/anie.199503371.
  14. A. V. Petrov, A. A. Zagidullin, T. I. Burganov, N. I. Shatalova, S. A. Katsyuba, V. A. Milyukov, Russ. Chem. Bull. (Int. Ed.), 2019, 68, 445.
  15. A. Zagidullin, I. A. Bezkishko, V. A. Miluykov, O. G. Sinyashin, Mendeleev. Commun., 2013, 23, 117.
  16. K. Fourmy, D.H. Nguyen, O. Dechy-Cabaret, M. Gouygou, Catal. Sci. Technol., 2015, 5, 4289.
  17. T. Baumgartner, Acc. Chem. Res., 2014, 47, 1613; DOI: https://doi.org/10.1021/ar500084b.
  18. A. S. Galushko, E. G. Gordeev, V. P. Ananikov, Langmuir, 2018, 34, 15739; DOI: https://doi.org/10.1021/acs.langmuir.8b03417.
  19. E. H. Braye, W. Hübel, I. Caplier, J. Am. Chem. Soc., 1961, 21, 4406; DOI: https://doi.org/10.1021/ja01482a026.
  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford CT, 2016.
  21. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297; DOI: https://doi.org/10.1039/B508541A.
  22. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104; DOI: https://doi.org/10.1063/1.3382344.
  23. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456; DOI: https://doi.org/10.1002/jcc.21759.