Examples



mdbootstrap.com



 
Статья
2017

Polyaniline nanowire arrays on reductive graphene oxide sheets with synergistic effect for supercapacitor


Wei Wang Wei Wang , Fanghua Zhu Fanghua Zhu , Yatang Dai Yatang Dai , Huan Zhang Huan Zhang , Yuhua Chen Yuhua Chen
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517020136
Abstract / Full Text

In this paper, oriented arrays of polyaniline (PANI) nanowires were fabricated on the surface of hierarchical graphene oxide (GO) nanosheets by in situ polymerization method. Then the GO was reduced to be graphene, the graphene/polyaniline (rGO-PANI) nanocomposites were obtained. After that, electrochemical properties of the rGO-PANI nanocomposites were well studied. The results showed that the rGO-PANI nanocomposites exhibited significant charge-discharge reversibility and electrochemical stability. It is more important that, compared with GO-PANI, the rGO-PANI nanocomposites generated much higher conductivity value and electrochemical capacitance.

Author information
  • School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China

    Wei Wang, Yatang Dai, Huan Zhang & Yuhua Chen

  • Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China

    Fanghua Zhu

References
  1. Abalyaeva, V.V., Baskakov, S.A., and Dremova, N.N., Russ. J. Electrochem., 2015, vol. 51, p. 916.
  2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Science, 2004, vol. 306, p. 666.
  3. Chen, G.L., Shau, S.M., Juang, T.Y., Lee, R.H., Chen, C.P., Suen, S.Y., and Jeng, R.J., Langmuir, 2011, vol. 27, p. 14563.
  4. Liu, Y., Deng, R.J., Wang, Z., and Liu, H.T., J. Mater. Chem., 2012, vol. 27, p. 13619.
  5. Abalyaeva, V.V., Baskakov, S.A., and Dremova, N.N., Russ. J. Electrochem., 2015, vol. 51, p. 976.
  6. Li, Y., Zhao, Y., Cheng, H.H., Hu, Y., Shi, G.Q., and Dai, L.M., J. Am. Chem. Soc., 2012, vol. 134, p. 15.
  7. Hsiao, M.C., Liao, S.H., Yen, M.Y., Liu, P.I., Pu, N.W., Wang, C.A., and Ma, C.C., ACS Appl. Mater. Inter., 2010, vol. 2, p. 3092.
  8. Yu, Z., Duong, B., Abbitt, D., and Thomas, J., Adv. Mater., 2013, vol. 10, p. 1.
  9. Li, G.R., Feng, Z.P., Zhong, J.H., Wang, Z.L., and Tong, Y.X., Macromolecules, 2010, vol. 43, p. 2178.
  10. Peng, H., Ma, G.F., Ying, W.M., Wang, A.D., Huang, H.H., and Lei, Z.Q., J. Power. Sources, 2012, vol. 211, p. 40.
  11. Huang, Y.F. and Lin, C.W., Polymer, 2012, vol. 53, p. 2574.
  12. Chatterjee, S., Layek, R.K., and Nandi, A.K., Carbon, 2013, vol. 52, p. 509.
  13. Zhang, Q.Q., Li, Y., Feng, Y.Y., and Feng, W., Electrochim. Acta, 2013, vol. 90, p. 95.
  14. Gao, Z., Yang, W.L., Wang, Y., Yan, H.J., Yao, Y., Ma, J., Wang, B., Zhang, M.L., and Liu, L.H., Electrochim. Acta, 2013, vol. 91, p. 185.
  15. Hummers, W.S. and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, p. 1339.
  16. Wu, Q., Xu, Y.X., Yao, Z.Y., Liu, A.R., and Shi, G.Q., ACS Nano, 2010, vol. 4, p. 1963.
  17. Gao, Z., Yang, W.L., Wang, J., Wang, B., Li, Z.S., Liu, Q., Zhang, M.L., and Liu, L.H., Energy Fuel., 2013, vol. 27, p. 568.
  18. Shulga, Y.M., Baskakov, S.A., Abalyaeva, V.V., Efimov, O.N., Shulga, N.Y., and Michtchenko, A., J. Power. Sources, 2013, vol. 224, p. 195.
  19. Cong, H.P., Ren, X.C., Wang, P., and Yu, S.H., Energy Environ. Sci., 2013, vol.6, p.1185.
  20. Taberna, P.L., Mitra, S., Poizot, P., Simon, P., and Tarascon, J.M., Nat. Mater., 2006, vol. 5, p. 567.
  21. Lai, L.F., Huang, G.M., Wang, X.F., and Weng, J., Carbon, 2010, vol. 48, p. 3145.
  22. Li, Y.Z., Zhao, X., Xu, Q., Zhang, Q.H., and Chen, D.J., Langmuir, 2011, vol. 27, p. 6458.
  23. Sahoo, S., Bhattacharta, P., Hatui, G., Ghosh. D., and Das, C.K., J. Appl. Polym. Sci., 2013, vol. 128, p. 1476.
  24. Lin, Y.Z., Zhao, X., Yu, P.P., and Zhang, Q.H., Langmuir, 2013, vol. 29, p. 493.
  25. Zhang, D.C., Zhang, X., Chen, Y., Yu, P., Wang, C.H., and Ma, Y.W., J. Power. Sources, 2011, vol. 196, p. 5990.