Examples



mdbootstrap.com



 
Статья
2020

Linear and Surface Tensions in the Region of Contact Angles of a Three-Aggregate System and Relaxation Times


Yu. K. TovbinYu. K. Tovbin
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420080270
Abstract / Full Text

An approach is formulated that allows calculation of three types of surface and linear tensions in the region of contact angles of a three-aggregate system. A molecular theory for three-aggregate systems based on the lattice gas model (LGM) is used to calculate surface tension (ST) and linear tension (LT). It provides a uniform description of molecular distributions of mixture components inside three bulk phases in different aggregate states and three types of their interfaces. The calculations are based on the Gibbs definition of STs and LTs, derived by calculating the excess free energy determined from interfaces of the mentioned phases, and experimental data on the relaxation times of mass and momentum transfer processes. For simplicity of description, a general approach is formulated for interfaces with ideal geometry: planar and spherical. Under real conditions, solid phases are typically nonequilibrium because of hindered redistribution of components. Non-equilibrium analogs of equilibrium potentials must be developed to describe these. Diffusion-type kinetic equations for unary and pair distribution functions must be used to calculate their evolution. Distributions of components of mobile vapor and liquid phases adapt to the distribution of components in solid phases. Problems in calculating STs and LTs are discussed using the example of vapor–liquid phases in a solid-phase porous matrix.

Author information
  • Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, RussiaYu. K. Tovbin
References
  1. J. W. Gibbs, Thermodynamics: Statistical Mechanics (Nauka, Moscow, 1982).
  2. I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans Green, London, 1954).
  3. V. Ya. Anosov and S. A. Pogodin, Basic Principles of Physico-Chemical Analysis (Moscow, 1947) [in Russian].
  4. V. Ya. Anosov, M. I. Ozerova, and Yu. L. Fialkov, Principles of Physico-Chemical Analysis (Moscow, 1976) [in Russian].
  5. A. V. Storonkin, Thermodynamics of Heterogeneous Systems (LGU, Leningrad, 1967) [in Russian].
  6. V. A. Kireev, Course on Physical Chemistry (Khimiya, Moscow, 1975) [in Russian].
  7. A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].
  8. A. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976).
  9. M. Jaycock and J. Parfitt, Chemistry of Interfaces (Ellis Horwood, Chichester (U.K.), 1981).
  10. J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford Univ., Oxford (U.K.), 1978).
  11. E. D. Shchukin, A. V. Pertsev, and E. A. Amelina, Colloid Chemistry (Vyssh. Shkola, Moscow, 1992) [in Russian].
  12. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 1115 (2018).
  13. A. I. Rusanov, Kolloidn. Zh. 39, 704 (1977).
  14. J. W. Cahn, J. Chem. Phys. 66, 3367 (1977).
  15. C. Ebner and W. F. Saam, Phys. Rev. Lett. 38, 1486 (1977).
  16. A. I. Rusanov, A. K. Shchekin, and D. V. Tatyanenko, Colloids Surf. A 250, 263 (2004).
  17. M. Volmer, Kinetic der Phasenbildung (Steinkopff, Dresden, Leipzig, 1939).
  18. Yu. K. Tovbin, Russ. J. Phys. Chem. A 90, 1507 (2016).
  19. Yu. K. Tovbin, E. S. Zaitseva, and A. B. Rabinovich, Russ. J. Phys. Chem. A 90, 1248 (2016).
  20. G. F. Voronin, Principles of Thermodynamics (MGU, Moscow, 1987) [in Russian].
  21. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 2424 (2018).
  22. Yu. K. Tovbin, Russ. J. Phys. Chem. A 93, 1662 (2019).
  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Pergamon, Oxford, 1980).
  24. Yu. K. Tovbin, Russ. J. Phys. Chem. A 94 (1) (2020, in press).
  25. Yu. K. Tovbin, Russ. J. Phys. Chem. A 94 (2) (2020, in press).
  26. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 1 (2018).
  27. C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).
  28. T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).
  29. K. Huang, Statistical Mechanics (Wiley, New York, 1987).
  30. T. Hill, Statistical Mechanics;Principles and Selected Applications (Dover, New York, 1987).
  31. Yu. K. Tovbin, Small Systems and Fundamentals of Thermodynamics (Fizmatlit, Moscow, 2018; CRC, Boca Raton, 2018).
  32. Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas-Solid Interface (Nauka, Moscow, 1990; CRC, Boca Raton, 1991).
  33. Yu. K. Tovbin, The Molecular Theory of Adsorption in Porous Solids (Nauka, Moscow, 2012; CRC, Boca Raton, 2017).
  34. Yu. K. Tovbin, Russ. J. Phys. Chem. A 89, 1971 (2015).
  35. Yu. K. Tovbin, Russ. J. Phys. Chem. A 93, 603 (2019).
  36. Yu. K. Tovbin, Russ. J. Phys. Chem. A 94 (9) (2020, in press).
  37. Yu. K. Tovbin, Russ. J. Phys. Chem. A 90, 1439 (2016).
  38. Yu. K. Tovbin, Russ. J. Phys. Chem. A 91, 1621 (2017).
  39. Yu. K. Tovbin, Russ. J. Phys. Chem. A 91, 403 (2017).
  40. S. Ono and S. Kondo, Handbuch der Physik (Springer, Berlin, 1960).
  41. J. E. Lane, Aust. J. Chem. 21, 827 (1968).
  42. E. M. Piotrovskaya and N. A. Smirnova, Kolloidn. Zh. 41, 1134 (1979).
  43. Yu. K. Tovbin, Kolloidn. Zh. 45, 707 (1983).
  44. N. A. Smirnova, Molecular Theories of Solutions (Khimiya, Leningrad, 1987) [in Russian].
  45. L. D. Landau, Zh. Eksp. Teor. Fiz. 5, 627 (1937).
  46. L. D. Landau, Collection of Scientific Works (Nauka, Moscow, 1969), Vol. 1, p. 234 [in Russian].
  47. F. E. Neumann, in Vorlesungen uber die Theorie der Kapillaritat, Ed. by A. Wangerin (Treuner, Leipzig, 1984), Chap. 6, p. 161.
  48. S. Gregg and K. Sing, Adsorption, Surface Area and Porosity (Academic, New York, 1982).
  49. W. A. Steele, The Interactions of Gases with Solid Surfaces (Pergamon, New York, 1974).
  50. N. N. Avgul’, A. V. Kiselev, and D. P. Poshkus, Adsorption of Gases and Vapors at Uniform Surfaces (Khimiya, Moscow, 1975) [in Russian].
  51. A. V. Kiselev, D. P. Poshkus, and Ya. I. Yashin, Molecular Foundations of Adsorptional Chromatography (Khimiya, Moscow, 1986) [in Russian].
  52. Yu. K. Tovbin, Russ. J. Phys. Chem. A 88, 1932 (2014).
  53. Yu. K. Tovbin, Prog. Surf. Sci. 34, 1 (1990).
  54. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 1115 (2018).
  55. Yu. K. Tovbin, D. V. Eremich, V. N. Komarov, and E. E. Gvozdeva, Khim. Fiz. 26 (9), 98 (2007).