Examples



mdbootstrap.com



 
Статья
2021

Electrocatalytic Reduction of Oxygen on Reduced Graphene Oxide/Iron Oxide (rGO/Fe3O4) Composite Electrode


F. YusoffF. Yusoff, K. SureshK. Suresh, W. M. KhairulW. M. Khairul, M. S. NoorashikinM. S. Noorashikin
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421040282
Abstract / Full Text

Reduced graphene oxide/iron oxide (rGO/Fe3O4) nanocomposite was synthesized by facile one-pot process and its performance as electrocatalyst for oxygen reduction reaction (ORR) was investigated. The nanocomposite was physically and electrochemically characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) method, scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). FT-IR, XRD, and SEM confirms the presence of rGO and Fe3O4 as whole. CV data shows increment in current responses nearly two and a half folds for rGO/Fe3O4/GCE. EIS analysis shows stable electron transfers with lower charge transfer resistance (Rct) of modified electrode due to synergistic effect between rGO and Fe3O4. The performance of the electrocatalyst in ORR was compared with bare GCE and rGO/GCE where higher catalytic performance and better stability were obtained. The analysis results shows that the compound could be a promising material for fuel cells.

Author information
  • Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, MalaysiaF. Yusoff, K. Suresh & W. M. Khairul
  • Eastern Corridor Renewable Energy (ECRE), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, MalaysiaF. Yusoff
  • Chemical Engineering Programme, Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaM. S. Noorashikin
References
  1. Q. Yan and J. Wu, Energy Convers. Manage. 49, 2425 (2008).
  2. Y. Deng, D. Qi, C. Deng, X. Zhang, and D. Zhao, J. Am. Chem. Soc. 130, 28 (2008).
  3. Y. Liu, M. Guan, L. Feng, and S. Deng, Nanotechnology 24, 025604 (2013).
  4. X. Yang, X. Zhang, Y. Ma, Y. Huang, and Y. Chen, J. Mater. Chem. 86, 2710 (2009).
  5. L. U. Kui, Z. Guixia, and W. Xiangke, Chin. Sci. Bull. 57, 1223 (2012).
  6. M. R. Hajiali, L. Jamilpanah, Z. Sheykhifard, M. Mokhtarzadeh, H. F. Yazdi, and B. Tork, Eprint ArVix, 1 (2017).
  7. A. Kagkoura, T. Skaltsas, and N. Tagmatarchis, Chem. - Eur. J. 23, 12967 (2017).
  8. K. Wang, P. Pei, Y. Wang, C. Liao, W. Wang, and S. Huang, Appl. Energy 225, 848 (2018).
  9. R. Krishna, C. Dias, J. Ventura, and E. Titus, Mater. Today: Proc. 3, 2807 (2016).
  10. A. K. Khan, A. U. Saba, S. Nawazish, F. Akhtar, R. Rashid, S. Mir, and G. Murtaza, Oxid. Med. Cell. Longev. 2017, 8158315 (2017).
  11. R. S. García, S. Stafford, and Y. K. Gun’ko, Appl. Sci. (Switzerland) 8 (2), 12 (2018).
  12. N. Zhu, H. Ji, P. Yu, J. Niu, M. U. Farooq, M. W. Akram, and X. Niu, Nanomaterials 8 (10), 1 (2018).
  13. M. Chen, L. Wang, H. Yang, S. Zhao, H. Xu, and G. Wu, J. Power Sources 375, 277 (2018).
  14. W. M. Khairul, N. B. Muhamad, and F. Yusoff, J. Solid State Chem. 275, 30 (2019).
  15. W. Hooch Antink, Y. Choi, K. D. Seong, J. M. Kim, and Y. Piao, Adv. Mater. Interfaces 5 (5), 1 (2018).
  16. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
  17. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, and J. M. Tour, ACS Nano 4, 4806 (2010).
  18. F. W. Low, C. W. Lai, and S. B. Abd Hamid, Ceram. Int. 43, 625 (2017).
  19. H. K. Can, S. Kavlak, S. Parvizi Khosroshahi, and A. Güner, Artif. Cells, Nanomed. Biotechnol. 46, 421 (2018).
  20. R. Bhargava and S. Khan, Adv. Powder Technol. 28, 2812 (2017).
  21. P. Devi, C. Sharma, P. Kumar, M. Kumar, B. K. S. Bansod, M. K. Nayak, and M. L. Singla, J. Hazard. Mater. 322, 85 (2017).
  22. D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, Prog. Mater. Sci. 90, 75 (2017).
  23. W. Wang, H. Cao, X. Zhou, and Z. Liu, in Graphene: Energy Storage and Conversion Applications, Vol. 6 of Electrochemical Energy Storage and Conversion (CRC, Boca Raton, FL, 2014), p. 21.
  24. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, and Y. Yang, Energy Environ. Sci. 4, 2826 (2011).
  25. Y. Farhanini, N. T. Khing, C. C. Hao, L. P. Sang, N. B. Muhamad, and N. Md Saleh, Malays. J. Anal. Sci. 22, 227 (2018).
  26. N. B. Muhamad and F. Yusoff, Malays. J. Anal. Sci. 22, 921 (2018).
  27. R. S. Nicholson, Anal. Chem. 37, 1351 (1965).
  28. F. Yusoff, N. Mohamed, A. Azizan, and S. Ab Ghani, Int. J. Electrochem. Sci. 11, 5766 (2016).
  29. F. Yusoff, A. Aziz, N. Mohamed, and S. A. Ghani, Int. J. Electrochem. Sci. 8, 10672 (2013).
  30. B. Wang, J. Power Sources 152, 1 (2005).
  31. H. Chen, X. Wang, G. Liu, A. Lin, Y. Wen, and H. Yang, Sci. China Chem. 58, 1585 (2019).