Examples



mdbootstrap.com



 
Статья
2016

Electrical double layer in surface-inactive electrolyte solution and adsorption of halide ions from 0.1 M solutions on liquid Cd–Ga and In–Ga alloys in gamma-butyrolactone


V. V. EmetsV. V. Emets, A. A. Mel’nikovA. A. Mel’nikov, B. B. DamaskinB. B. Damaskin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516010031
Abstract / Full Text

The double-layer characteristics of liquid renewable Cd–Ga (0.3 at % Cd) and In–Ga (14.2 at % In) electrodes in the gamma-butyrolactone (GBL) solutions of various electrolytes are studied by measuring the differential capacitance and using the method of open-circuit jet electrode. For the (Cd–Ga)/GBL and (In–Ga)/GBL interfaces, the zero-charge potentials, which are not distorted by the specific adsorption of ions, and the chemisorption potential drops of solvent are determined. It is shown that, in spite of the fact that the work function decreases as we pass from (In–Ga) to (Cd–Ga), the chemisorption potential drops of solvent on both electrodes are close. This behavior is explained by a closer approach of GBL dipoles to the surface of (Cd-Ga) electrode providing more effective overlapping of donor–acceptor levels of metal and solvent. It is shown that, in GBL, the adsorption parameters of halide ions and their surface activity series depend on the metal nature. On the (Cd–Ga) and (In–Ga) electrodes, the reversed surface activity series of halide ions is observed: on the Hg electrode in various solvents, the surface activity increases in the series Cl < Br < I, whereas on the (Cd–Ga) and (In–Ga) electrodes in GBL, it varies in the reverse series I < Br < Cl.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119071, RussiaV. V. Emets & A. A. Mel’nikov
  • Department of Chemistry, Moscow State University, Moscow, 119991, RussiaB. B. Damaskin
References
  1. Emets, V.V. and Damaskin, B.B., Russ. J. Electrochem., 2009, vol. 45, p. 45.
  2. Emets, V.V. and Damaskin, B.B., J. Electroanal. Chem., 2007, vol. 600, p. 191.
  3. Emets, V.V., Damaskin, B.B., Bagotskaya, I.A., and Mishuk, V.Ya., Russ. J. Electrochem., 2000, vol. 36, p. 661.
  4. Emets, V.V. and Damaskin, B.B., J. Electroanal. Chem., 2000, vol. 491, p. 30.
  5. Grigor’ev, N.B., Fateev, S.A., and Bagotskaya, I.A., Elektrokhimiya, 1972, vol. 8, p. 1525.
  6. Fialkov, Yu.Ya., Rastvoritel’ kak sredstvo upravleniya khimicheskim protsessom (Solvent as a Means for the Control of Chemical Process), Leningrad: Khimiya, 1990.
  7. Barthel, J. and Gores, H.-J., Solution Chemistry: A cutting Edge in Modern Electrochemical Technology, in: Chemistry of Nonaqueous Electrolyte Solutions, Mamontov, G. and Popov, A.I., Eds., New York: VCH, 1994, Ch. 1, pp. 1–148.
  8. Xu, K., Chem. Rev., 2004, vol. 104, no. 10, p. 4303.
  9. Janes, A. and Lust, E., J. Electrochem. Soc., 2006, vol. 153, p. A113.
  10. Lust, E., Janes, A., and Arulepp, M., J. Electroanal. Chem., 2004, vol. 562, p. 33.
  11. Lust, E., Janes, A., and Arulepp, M., J. Solid State Electrochem., 2004, vol. 8, p. 488.
  12. Ding, M.S., Xu, K., Zheng, J.P., and Jow, T.R., J. Power Sources, 2004, vol. 138, p. 340.
  13. Payne, R., J. Phys. Chem., 1967, vol. 71, p. 1548.
  14. Vaartnou, M. and Lust, E., J. Electroanal. Chem., 2014, vol. 733, p. 20.
  15. Chernozhuk, T.V. and Kalugin, O.N., Visnik Kharkivs’kogo Natsional’nogo Universitetu, 2006, vol. 14 (37), no. 731, p. 171.
  16. Emets, V.V. and Damaskin, B.B., J. Electroanal. Chem., 2012, vol. 667, p. 76.
  17. Gouy, G., J. Phys. et Radium, 1910, vol. 9, p. 457.
  18. Chapman, D., Philos. Mag., 1913, vol. 25, p. 475.
  19. Grahame, D., Chem. Rev., 1947, vol. 41, p. 441.
  20. Parsons, R. and Zobel, F.G.K., J. Electroanal. Chem., 1965, vol. 9, p. 333.
  21. Emets, V.V. and Damaskin, B.B., Russ. J. Electrochem., 2000, vol. 36, p. 668.
  22. Emets, V.V., Kazarinov, V.E., and Bagotskaya, I.A., Russ. J. Electrochem., 1996, vol. 32, p. 1069.
  23. Emets, V.V., Damaskin, B.B., and Kazarinov, V.E., Elektrokhimiya, 1995, vol. 31, p. 117.
  24. Emets, V.V., Damaskin, B.B., and Kazarinov, V.E., Elektrokhimiya, 1995, vol. 31, p. 787.
  25. Emets, V.V., Damaskin, B.B., and Kazarinov, V.E., Russ. J. Electrochem., 1996, vol. 32, p. 1062.
  26. Bagotskaya, I.A., Damaskin, B.B., Emets, V.V., and Kazarinov, V.E., J. Electroanal. Chem., 1998, vol. 448, p. 229.
  27. Emets, V.V., Damaskin, B.B., and Kazarinov, V.E., Russ. J. Electrochem., 1999, vol. 35, p. 499.
  28. Emets, V.V. and Damaskin, B.B., J. Electroanal. Chem., 2002, vol. 528, p. 57.
  29. Amokrane, S. and Badiali, J.P., J.Electroanal. Chem., 1989, vol. 266, p. 21.
  30. Amokrane, S. and Badiali, J.P., J. Electroanal. Chem., 1991, vol. 297, p. 377.
  31. Amokrane, S. and Badiali, J.P., in Modern Aspects of Electrochemistry, Bockris, J.O’M., Conway, B.E., and White, R.E., Eds., New York: Plenum, 1992, vol. 21, p. 1.
  32. Gutmann, V., Coordination Chemistry in Non-Aqueous Solutions, Wien: Springer, 1968.
  33. Trasatti, S. and Lust, E., in Modern Aspects of Electrochemistry, White, R.E, et al., Eds., New York: Kluwer Academic/Plenum, 1999, vol. 33, p. 1.
  34. Emets, V.V. and Damaskin, B.B., Russ. J. Electrochem., 2010, vol. 46, p. 1036.
  35. Emets, V.V. and Damaskin, B.B., Russ. J. Electrochem., 2011, vol. 47, p. 89.
  36. Emets, V.V. and Damaskin, B.B., Russ. J. Electrochem., 2011, vol. 47, p. 121.