Статья
2017

Bioelectrocatalytic Oxygen Reduction by Laccase Immobilized on Various Carbon Carriers


V. A. Bogdanovskaya V. A. Bogdanovskaya , I. N. Arkad’eva I. N. Arkad’eva , M. A. Osina M. A. Osina
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517120047
Abstract / Full Text

Laccase is an enzyme that is used for fabricating cathodes of biofuel cells. Many studies have been aimed at searching the ways for enhancing specific electrochemical characteristics of cathode with the laccase- based catalyst. The electroreduction of oxygen on the electrode with immobilized laccase proceeds under the conditions of direct electron transfer between the electrode and active enzyme center. In this work, the effect of oxygen partial pressure on the electrocatalytic activity of laccase is studied. It is shown that, at the concentrations of oxygen dissolved in the electrolyte higher than 0.28 mM, the process is controlled by the kinetics of the formation of laccase–oxygen complex, whereas at lower concentrations and a polarization higher than 0.3 V, the process is limited by the oxygen diffusion. A wide range of carbon materials are studied as the carriers for laccase immobilization: carbon black and nanotubes with various BET specific surface areas. The conditions, which provide the highest surface coverage of carbon material with enzyme in the course of spontaneous adsorptive immobilization and the highest specific characteristics when using a “floating” electrode simulating a gas-diffusion electrode, are determined: 0.2 M phosphate-acetate buffer solution; oxygen atmosphere; the carrier material (nanotubes with a BET surface area of 210 m2/g and a mesopore volume of 3.8 cm3/g); and the composition of active mass on the electrode (50 wt % of carbon material + 50 wt % of hydrophobized carbon black).

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119071, Russia

    V. A. Bogdanovskaya

  • Mendeleev University of Chemical Technology, Miusskaya pl. 9, Moscow, 125047, Russia

    I. N. Arkad’eva

  • National Research University “Moscow Power Engineering Institute”, ul. Krasnokazarmennaya 14, Moscow, 111250, Russia

    M. A. Osina

References
  1. Tarasevich, M.R., Yaropolov, A.I., Bogdanovskaya, V.A., and Varfolomeev, S.D., Electrocatalysis of a cathodic oxygen reduction by laccase, J. Electroanal. Chem., 1979, vol. 104, p. 393.
  2. Tarasevich, M.R., Bogdanovskaya, V.A., Gavrilova, E.F., and Orlov, S.B., Electrocatalysis of cathodic oxygen reduction with biopolymers- enzymes and their models, J. Electroanal. Chem., 1986, vol. 206, p. 217.
  3. Kuznetsov, A.M., Bogdanovskaya, V.A., Tarasevich, M.R., and Gavrilova, E.F., The mechanism of cathode reduction of oxygen in a carbon carrier-laccase system, FEBS Lett., 1987, vol. 215, no. 2, p. 219.
  4. Bogdanovskaya, V.A., Tarasevich, M.R., Kuznetsova, L.N., Reznik, M.F., and Kasatkin, E.V., Peculiarities of direct bioelectrocatalysis by laccase in aqueous-nonaqueous mixtures, Biosens. Bioelectron., 2002, vol. 17, p. 945.
  5. Tarasevich, M.R., Bogdanovskaya, V.A., and Kapustin, A.V., Nanocomposite material laccase/dispersed carbon carrier for oxygen electrode, Electrochem. Commun., 2003, vol. 5, p. 491.
  6. Kapustin, A.V., Tarasevich, M.R., Chirkov, Yu.G., and Bogdanovskaya, V.A., Active layer of an oxygen electrode based on nanocomposite disperse carbon carrier + laccase material, Russ. J. Electrochem., 2004, vol. 40, p. 909.
  7. Tarasevich, M.R., Chirkov, Yu.G., Bogdanovskaya, V.A., and Kapustin, A.V., Fractal and percolation properties of active layer structure at oxygen electrode based on nanocomposite material of dispersed carbon carrier/ laccase, Electrochim. Acta, 2005, vol. 51, p. 418.
  8. Tarasevich, M.R., Bogdanovskaya, V.A., and Varfolomeev, S.D., Electrocatalysis of a cathodic oxygen reduction by laccase, Bioelectrochem. Bioenerg., 1979, vol. 6, p. 393.
  9. Patil, B., Kobayashi, Y., Fujikawa, S., Okajima, T., Mao, L., and Ohsaka, T., Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on l-cysteine self-assembled gold electrode, Bioelectrochem., 2014, vol. 95, p. 15.
  10. Babanova, S., Artyushkova, K., Ulyanova, Y., Singhal, S., and Atanassov, P., Design of experiments and principal component analysis as approaches for enhancing per-formance of gas-diffusional air-breathing bilirubin oxidase cathode, J. Power Sources, 2014, vol. 245, p. 389.
  11. Haberska, K., Vaz-Dominguez, C., De Lacey, A.L., Dagys, M., Reimann, C.T., and Shleev, S., Direct electron transfer reactions between human ceruloplasmin and electrodes, Bioelectrochem., 2009, vol. 76, p. 34.
  12. Shoja, Y., Rafati, A.A., and Ghodsi, J., Glassy carbon electrode modified with horse radish peroxidase/ organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa, Mater. Sci. Eng. C, 2016, vol. 58, p. 835.
  13. Likhtenshtein, G.I., Mnogoyadernye okislitel’no-vosstanovitel’nye metallofermenty (Multinuclear Redox Metal Enzymes), Moscow: Nauka, 1979.
  14. Berezin, I.V., Bogdanovskaya, V.A., Varfolomeev, S.D., Tarasevich, M.R., and Yaropolov, A.I., Equilibrium oxygen potential in the presence of laccase, Dokl. Akad. Nauk SSSR, 1978, vol. 240, p. 615.
  15. Holzinger, M., Le Goff, A., and Cosnier, S., Carbon nanotube/enzyme biofuel cells, Electrochim. Acta, 2012, vol. 82, p. 179.
  16. De Poulpiquet, A., Ciaccafava, A., and Lojou, E., New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells, Electrochim. Acta, 2014, vol. 126, p. 104.
  17. Kim, R.E., Hong, S., Hab, S., and Kim, J., Enzyme adsorption, precipitation and crosslinking of glucose oxidase and laccase on polyaniline nanofibers for highly stable enzymatic biofuel cells, Enzyme Microb. Technol., 2014, vol. 66, p. 35.
  18. Fenga, P.G., Cardoso, F.P., Aquino, N.S., and Andrade, A.R., Multiwalled carbon nanotubes to improve ethanol/air biofuel cells, Electrochim. Acta, 2013, vol. 106, p. 109.
  19. Zebda, A., Renaud, L., Cretin, M., Innocent, C., Ferrigno, R., and Tingry, S., Membraneless microchannel glucose biofuel cell with improved electrical performances, Sens. Actuators, B: Chemical, 2010, vol. 149, p. 44.
  20. Habrioux, A., Merle, G., Servat, K., Kokoh, K.B., Innocent, C., Cretin, M., and Tingry, S., Concentric glucose/O2 biofuel cell, J. Electroanal. Chem., 2008, vol. 622, p. 97.
  21. Oncescu, V. and Erickson, D., A microfabricated low cost enzyme-free glucose fuel cell for powering lowpower implantable devices, J. Power Sources, 2011, vol. 196, p. 9169.
  22. Mac, Vittie, K., Conlon, T., and Kat, E., A wireless transmission system powered by an enzyme biofuel cell implanted in an orange, Bioelectrochem., 2015, vol. 106, p. 28.
  23. Du Toit, H. and Di Lorenzo, M., Continuous power generation from glucose with two different miniature flowthrough enzymatic biofuel cells, Biosens. Bioelectron., 2015, vol. 69, p. 199.
  24. Reid, R.C., Minteer, S.D., and Gale, B.K., Contact lens biofuel cell tested in a synthetic tear solution, Biosens. Bioelectron., 2015, vol. 68, p. 142.
  25. Cosnier, S., Le Goff, A., Holzinger, M., Label-free impedimetric thrombin sensor based on poly (pyrrolenitrilotriacetic acid)-aptamer film, Electrochem. Commun., 2014, vol. 38, p. 19.
  26. Kizling, M., Draminska, S., Stolarczyk, K., Tammela, P., Wang, Z., Nyholm, L., and Bilewicz, R., Biosupercapacitors for powering oxygen sensing devices, Bioelectrochem., 2015, vol. 106, p. 34.
  27. Jensen, U.B., Lurcher, S., Vagin, M., Chevallier, J., Shipovskov, S., Koroleva, O., Besenbacher, F., and Ferapontova, E., A 1.76 V hybrid Zn-O2 biofuel cell with a fungal laccase-carbon cloth biocathode, Electrochim. Acta, 2012, vol. 62, p. 218.
  28. Stolarczyk, K., Kizling, M., Majdecka, D., Zelechowska, K., Biernat, J.F., Rogalski, J., and Bilewicz, R., Cathodic and anodic stripping determination of traces of adenine and adenosine based on accumulation of copper(I) compounds at mercury or amalgam electrodes, J. Power Sources, 2014, vol. 249, p. 263.
  29. Dagys, M., Lamberg, P., Shleev, S., Niaura, G., Bachmatova, I., Marcinkeviciene, L., Meskys, R., Kulys, J., Arnebrant, T., and Ruzgas, T., Comparison of bioelectrocatalysis at Trichaptum abietinum and Trametes hirsuta laccase modified electrodes, Electrochim. Acta, 2014, vol. 130, p. 141.
  30. Gupta, G., Lau, C., Branch, B., Rajendran, V., Ivnitski, D., and Atanassov, P., Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes, Electrochim. Acta, 2011, vol. 56, p. 10767.
  31. Deng, L., Shang, L., Wang, Y., Wang, T., Chen, H., and Dong, S., Multilayer structured carbon nanotubes/ poly-L-lysine/laccase composite cathode for glucose/O2 biofuel cell, Electrochem. Commun., 2008, vol. 10, p. 1012.
  32. Stolarczyk, K., Nazaruk, E., Rogalski, J., and Bilewicz, R., Nanostructured carbon electrodes for laccase-catalyzed oxygen reduction without added mediators, Electrochim. Acta, 2008, vol. 53, p. 3983.
  33. Karaskiewicz, M., Majdecka, D., Wieckowska, A., Biernat, J.F., Rogalski, J., and Bilewicz, R., Inducedfit binding of laccase to gold and carbon electrodes for the biological fuel cell applications, Electrochim. Acta, 2014, vol. 126, p. 132.
  34. Poller, S., Beyl, Y., Vivekananthan, J., Guschin, D.A., and Schuhmann, W., A new synthesis route for Oscomplex modified redox polymers for potential biofuel cell applications, Bioelectrochem., 2012, vol. 87, p. 178.
  35. Karaskiewicz, M., Nazaruk, E., Zelechowska, K., Biernat, J.F., Rogalski, J., and Bilewicz, R., Fully enzymatic mediatorless fuel cell with efficient naphthylated carbon nanotube—laccase composite cathodes, Electrochem. Commun., 2012, vol. 20, p. 124.
  36. Gutiurrez-Sanchez, C., Jia, W., Beyl, Y., Pita, M., Schuhmann, W., De Lacey, A.L., and Stoica, L., Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes, Electrochim. Acta, 2012, vol. 82, p. 218.
  37. Fernandez, M., Sanroman, M.A., and Moldez, D., Recent developments and applications of immobilized laccase, Biotechnol. Adv., 2013, vol. 31, p. 1808.
  38. Zhutaeva, G.V., Radina, M.V., Kazanskii, L.P., Tarasevich, M.R., Scichko, E.A., and Gavrilova, N.N. Physico-chemical properties of carbon nanotubes as supports for cathode catalysts of fuel cells. Surface structure and corrosion resistance, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p.45.
  39. Budevski, E.B., Iliev, I.D., Kaisheva, A.R., Gamburtsev, S.S., and Vakanova, E.B., USSR Inventor’s Certificate no. 500557, 1976.
  40. Shteinberg, G.V., Kukushkina, I.A., Bagotskii, V.S., and Tarasevich, M.R., Study of kinetics of oxygen reduction on dispersed carbon materials, Elektrokhimiya, 1979, vol. 15, p. 527.
  41. Gorshina, E.S., Rusinova, T.V., Biryukov, V.V., Morozova, O.V., Shleev, S.V., and Yaropolov, A.I., The dynamics of oxidase activity during cultivation of basidiomycetes from the genus Trametes Fr, Appl. Biochem. Microbiol., 2006, vol. 42, p. 558.
  42. Chakchir, B.A. and Alekseeva, G.M., Fotometricheskie metody analiza: Metodicheskie ukazaniya, (Photometric Methods of Analysis: Procedure Instructions), St. Petersburg: St.-Peterb. Chemical–Pharmaceutical Acad., 2002.
  43. Tarasevich, M.R., Bogdanovskaya, V.A., and Kuznetsova, L.N., Bioelectrocatalytic reduction of oxygen in the presence of laccase adsorbed on carbon electrodes, Russ. J. Electrochem., 2001, vol. 37, p. 833.
  44. Rubin, V. and Mor, L., Physical modeling of the enzymatic glucose-fueled fuel cells, Adv. Chem. Eng. Sci., 2013, vol. 3, p. 218.
  45. Klepikov, A.A. and Shamtsyan, M.M., Screening and study of basidiomycetes as producers. Chemistry and Chemical Technology. Organic Synthesis and Biotechnology, Izv. St.-Peterb. State Inst. of Technology (Technical Univ.), 2014, no. 23, p. 39.
  46. Solomon, E.I., Sundaram, U.M., and Machonkin, T.E., Multicopper oxidases and oxygenases, Chem. Rev., 1996, vol. 96, p. 2563.