Examples



mdbootstrap.com



 
Статья
2022

Spectral-Luminescent and Ionochromic Properties of Azomethine Imine-Coumarin Conjugates


O. G. NikolaevaO. G. Nikolaeva, O. S. PopovaO. S. Popova, I. V. DubonosovaI. V. Dubonosova, O. Yu. KarlutovaO. Yu. Karlutova, A. D. DubonosovA. D. Dubonosov, V. A. BrenV. A. Bren, V. I. MinkinV. I. Minkin
Российский журнал общей химии
https://doi.org/10.1134/S1070363222050139
Abstract / Full Text

Azomethine imine-coumarin mono- and bis-conjugates have been synthesized for the first time. The obtained compounds represent multifunctional chromogenic and fluorescent species capable of detecting fluoride, acetate, dihydrophosphate, and cyanide anions as well as d-metal cations (Zn2+, Pb2+, Hg2+, and Cu2+) owing to the ionochromism (the naked-eye effect) and enhancing/quenching of initial ESIPT emission with anomalous Stokes shift. The monoconjugate based on 6,7-dihydroxy-4-methyl-2-oxo-2H-chromene-8-carbaldehyde has been found capable of selective detection of CN anions in the presence of competing F, AcO, H2PO4, Cl, NO3, and HSO4ions. It has exhibited selective sensor activity towards Hg2+ cations in the presence of Na+, K+, Ca2+, Ba2+, Zn2+, Cu2+, Cd2+, Ni2+, Cu2+, and Pb2+ ions.

Author information
  • Institute of Physical and Organic Chemistry, Southern Federal University, 344090, Rostov-on-Don, RussiaO. G. Nikolaeva, O. S. Popova, I. V. Dubonosova, O. Yu. Karlutova, V. A. Bren & V. I. Minkin
  • Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, 344006, Rostov-on-Don, RussiaA. D. Dubonosov
References
  1. Deepthi, A., Thomas, N.V., and Sruthi, S.L., New J. Chem., 2021, vol. 45, no. 20, p. 8847. https://doi.org/10.1039/D1NJ01090E
  2. Wu, M.C., Xia, P.J., Hu, Y.Z., Ye, Z.P., Chen, K., Xiang, H.Y., and Yang, H., Tetrahedron, 2021, vol. 83, article 131992. https://doi.org/10.1016/j.tet.2021.131992
  3. Nájera, C., Sansano, J.M., and Yus, M., Org. Biomol. Chem., 2015, vol. 13, p. 8596. https://doi.org/10.1039/C5OB01086A
  4. Belskaya, N.P., Bakulev, V.A., and Fan, Z., Chem. Heterocycl. Compd., 2016, vol. 52, p. 627. https://doi.org/10.1007/s10593-016-1943-2
  5. Mei, G.J., Zhu, Z.Q., Zhao, J.J., Bian, C.Y., Chen, J., Chen, R.W., and Shi, F., Chem. Commun., 2017, vol. 53, p. 2768. https://doi.org/10.1039/C6CC09775H
  6. Panfil, I., Urbaсczyk-Lipkowska, Z., Suwiсska, K., Solecka, J., and Chmielewski, M., Tetrahedron, 2002, vol. 58, p. 1199. https://doi.org/10.1016/S0040-4020(01)01195-4
  7. Volpe, C., Meninno, S., Capobianco, A., Vigliotta, G., and Lattanzi, A., Adv. Synth. Catal., 2019, vol. 361, p. 1018. https://doi.org/10.1002/adsc.201801567
  8. Bugarinović, J.P., Pešić, M.S., Minić, A., Katanić, J., Ilić-Komatina, D., Pejović, A., Mihailović, V., Stevanović, D., Nastasijević, B., and Damljanovic, I., J. Inorg. Biochem., 2018, vol. 189, p. 134. https://doi.org/10.1016/j.jinorgbio.2018.09.015
  9. Kuzmin, M.G. and Kozmenko, M.V., Organic Photochromes, Eltsov, A.V., Ed., New-York: Plenum Press, 1990, p. 245.
  10. Bren, V.A., Popova, O.S., Tolpygin, I.E., Chernoivanov, V.A., Revinskii, Yu.V., and Dubonosov, A.D., Russ. Chem. Bull., 2015, vol. 64, no. 3, p. 668. https://doi.org/10.1007/s11172-015-0916-4
  11. Bren, V.A., Dubonosov, A.D., Popova, O.S., Revinskii Yu.V., Tikhomirova, K.S., and Minkin, V.I., Int. J. Photoenergy, 2018, vol. 2018, article 9746534. https://doi.org/10.1155/2018/9746534
  12. Dubonosov, A.D. and Bren, V.A., in Fluorescence Methods for Investigation of Living Cells and Microorganisms, Grigoryeva, N., Ed., London: IntechOpen, 2020, p. 353.
  13. Nikolaeva, O.G., Shepelenko, E.N., Tikhomirova, K.S., Revinskii, Yu.V., Dubonosov, A.D., Bren, V.A., and Minkin, V.I., Mendeleev Commun., 2016, vol. 26, no. 5, p. 402. https://doi.org/10.1016/j.mencom.2016.09.012
  14. Cao, D., Liu, Z., Verwilst, P., Koo, S., Jangjili, P., Kim, J.S., and Lin, W., Chem. Rev., 2019, vol. 119, no. 18, p. 10403. https://doi.org/10.1021/acs.chemrev.9b00145
  15. Anamika, U.D., Ekta, J.N., and Sharma, S., Curr. Org. Chem., 2019, vol. 22, no. 26, p. 2509. https://doi.org/10.2174/1385272822666181029102140
  16. Calcio Gaudino, E., Tagliapietra, S., Martina, K., Palmisano, G., and Cravotto, G., RSC Adv., 2016, vol. 6, p. 46394. https://doi.org/10.1039/C6RA07071J
  17. Yamaji, M., Hakoda, Y., Okamoto, H., and Tani, F., Photochem. Photobiol. Sci., 2017, vol. 12, no. 4, p. 555. https://doi.org/10.1039/c6pp00399k
  18. Al-Masoudi, N.A., Al-Salihi, N.J., Marich, Y.A., and Markus, T., J. Fluoresc., 2015, vol. 25, no. 6, p. 1847. https://doi.org/10.1007/s10895-015-1677-z
  19. Wang, Z.S., Cui, Y., Hara, K., Dan-oh, Y., Kasada, C., and Shinpo, A., Adv. Mater., 2007, vol. 19, no. 8, p. 1138−1141. https://doi.org/10.1002/adma.200601020
  20. Krzeszewski, M., Vakuliuk, O., and Gryko, D.T., Eur. J. Org. Chem., 2013, vol. 2013, no. 25, p. 5631. https://doi.org/10.1002/ejoc.201300374
  21. Kwon, J.E. and Park, S.Y., Adv. Mater., 2011, vol. 23, no. 32, p. 3615. https://doi.org/10.1002/adma.,201102046
  22. Zhao, J., Ji, S., Chen, Y., Guo, H., and Yang, P., Phys. Chem. Chem. Phys., 2002, vol. 14, p. 8803. https://doi.org/10.1039/C2CP23144A
  23. Li, Y., Bai, X., Liang, R., Zhang, X., Nguyen, Y.H., VanVeller, B., Du, L., and Phillips, D.L., J. Phys. Chem. B, 2021, vol. 125, no. 47, p. 12981. https://doi.org/10.1021/acs.jpcb.1c05798
  24. Udhayakumari, D., Spectrochim. Acta (A), 2020, vol. 228, article 117817. https://doi.org/10.1016/j.saa.2019.117817
  25. Wang, F., Wang, L., Chen, X., and Yoon, J., Chem. Soc. Rev., 2014, vol. 43, no. 13, p. 4312. https://doi.org/10.1039/c4cs00008k
  26. Kaur, B., Kaur, N., and Kumar, S., Coord. Chem. Rev., 2018, vol. 358, p. 13. https://doi.org/10.1016/j.ccr.2017.12.002
  27. Kaur, N., Kaur, G., Fegade, U.A., Singh, A., Sahoo, S.K., Kuwar, A.S., and Singh, N., Trends Anal. Chem., 2017, vol. 95, p. 86. https://doi.org/10.1016/j.trac.2017.08.00
  28. Yeap, G.Y., Hrishikesan, T., Chan, Y.H., and Mahmood, W.A.K., J. Fluoresc., 2017, vol. 27, no. 1, p. 105. https://doi.org/10.1007/s10895-016-1938-5
  29. Zhao, L.Y., Wang, G.K., Chen, J.H., Zhang, L.M., Liu, B., Zhang, J.F., Zhao, Q.H., and Zhou, Y., J. Fluorine Chem., 2014, vol. 158, p. 53. https://doi.org/10.1016/j.jfluchem.2013.11.002
  30. Liu, F., Fan, C., Tu, Y., and Pu, S., RSC Adv., 2018, vol. 8, p. 31113. https://doi.org/10.1039/c8ra05439h
  31. Aydiner, B., Sahin, O., Cakmaz, D., Kaplan, G., Kaya, K., Ozmen Ozdemir, U., Seferoglu, N., and Seferoglu, Z., New J. Chem., 2020, vol. 44, p. 19155. https://doi.org/10.1039/d0nj03003a
  32. Lee, H.J., Park, S.J., Sin, H.J., Na, Y.J., and Kim, C., New J. Chem., 2015, vol. 39, p. 3900. https://doi.org/10.1039/c5nj00169b
  33. Popova, O.S., Revinskii Yu.V., Tkachev, V.V., Utenyshev, A.N., Karlutova O.Yu., Starikov, A.G., Dubonosov, A.D., Bren, V.A., Aldoshin, S.M., and Minkin, V.I., J. Mol. Struct., 2020, vol. 1199, article 127013. https://doi.org/10.1016/j.molstruc.2019.127013
  34. Gel’man, N.E., Terent’eva, E.A., Shanina, T.M., Kiparenko, L.M., and Rezl, V., Metody kolichestvennogo organicheskogo elementnogo mikroanaliza (Methods for Quantitative Organic Elemental Microanalysis), Moscow: Khimiya, 1987.